Edge Groups 思维 树形dp

这是一个关于图论的算法问题,给定一个具有奇数个节点的无向连通图,任务是将所有边分成若干组,每组包含两条共享一个公共顶点的边。题目要求计算满足条件的分割方案数,并对998244353取模。给出的示例展示了如何通过深度优先搜索计算每个节点的贡献,并最终得出答案。
摘要由CSDN通过智能技术生成

Given an undirected connected graph of nn vertices and n−1n−1 edges, where nn is guaranteed to be odd. You want to divide all the n−1n−1 edges to n−12n−12 groups under following constraints:

  • There are exactly 2 edges in each group
  • The 2 edges in the same group share a common vertex

Determine the number of valid dividing schemes modulo 998244353998244353. Two schemes are considered different if there are 2 edges that are in the same group in one scheme but not in the same group in the other scheme.

Input

The first line contains one integer n(3≤n≤105)n(3≤n≤105), denoting the number of vertices.

Following n−1n−1 lines each contains two integers u,v(1≤u<v≤n)u,v(1≤u<v≤n), denoting that vertex u,vu,v are undirectedly connected by an edge.

It is guaranteed that nn is odd and that the given graph is connected.

Output

Output one line containing one integer, denoting the number of valid dividing schemes modulo 998244353998244353.

Example

input

Copy

7
1 2
1 3
1 7
4 7
5 7
6 7

output

Copy

3

Note

The 3 schemes are:

  • The 3 edge groups are {1↔2,1↔3},{1↔7,4↔7},{5↔7,6↔7}{1↔2,1↔3},{1↔7,4↔7},{5↔7,6↔7}
  • The 3 edge groups are {1↔2,1↔3},{1↔7,5↔7},{4↔7,6↔7}{1↔2,1↔3},{1↔7,5↔7},{4↔7,6↔7}
  • The 3 edge groups are {1↔2,1↔3},{1↔7,6↔7},{4↔7,5↔7}{1↔2,1↔3},{1↔7,6↔7},{4↔7,5↔7}

拿这个图来分析

对于2这个结点 只能24 和 25  组成一组 对于3这个结点 因为73 和 79 组成一组所以3结点是无法用37这条边的 计算3的贡献的时候要忽略37这条边

计算贡献的方法:对于一个结点如果它与它子结点的有效边是偶数的话(上图2,3结点都是这种情况)假设有效边数是n 对这n条边进行全排列方案数是n!因为每组里面的边是没有顺序的 所以除以2^(n/2) 然后又因为每组是没有顺序的所以除以(n/2)! 然后得到(n-1)!! 两个!表示所有奇数的乘积

当然还要乘上每一个子结点的贡献

如果是奇数的话 就是(n-2)!! * n 也就是 n!!

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 100010,MAX = 0x3f3f3f3f,mod = 998244353;
ll dp[MAXN];
int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0),cout.tie(0);
	int n,t1,t2;
	cin >> n;
	vector<int> v[n+1];
	for(int i = 1;i < n; i++){
		cin >> t1 >> t2;
		v[t1].push_back(t2);
		v[t2].push_back(t1);
	} 
	function<int(int,int)> dfs = [&] (int now,int fath){
		dp[now] = 1;
		int cnt = 0;
		for(int x : v[now]){
			if(x == fath) continue;
			if(!dfs(x,now)) cnt++;
			dp[now] = (dp[now]*dp[x])%mod;
		}
		for(int i = 1;i <= cnt; i += 2) dp[now] = (dp[now]*i)%mod;
		return cnt&1;
	};
	dfs(1,0);
	cout << dp[1];
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值