线性回归之梯度下降法和最小二乘法

本文介绍了线性回归中的两种常用优化方法:梯度下降法(GD)和最小二乘法(OLS)。详细讨论了GD的批量、随机和小批量梯度下降,包括其原理、更新公式和调优策略,如步长选择、初始值影响及归一化。同时,解释了最小二乘法的矩阵表达式及其在特征线性相关时的处理方法。最后,讨论了在实际应用中如何选择合适的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析;如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。常用的方法有梯度下降法和最小二乘法。

1.梯度下降法(GD)

1.1 原理:

        \theta =\theta -\alpha \frac{\partial }{\partial \theta }J\left ( \theta \right )

        其中,\alpha为学习速率或步长(Learning rate)

1.2 假设函数:

        h_{\theta }\left ( x \right )=\theta _{0}+\theta _{1}x_{1}+...+\theta _{n}x_{n}

1.3 损失函数:

        J\left ( \theta \right )=\frac{1}{2m}\sum_{i=1}^{m}\left ( h_{\theta }\left ( x^{\left ( i \right )} \right )-y^{\left ( i \right )} \right )^{2} 

1.4 分析过程:

        1.4.1 批量梯度下降法(BGD)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值