机器学习之Logistic回归

本文深入探讨了Logistic回归,这是一种用于二分类问题的机器学习算法。首先介绍了Logistic函数,即Sigmoid函数,它将预测值映射到(0,1)区间。接着,讨论了逻辑回归的假设函数表达式,并详细阐述了损失函数及其对应的θ参数更新规则,利用梯度下降法优化模型。" 130383741,8524055,MySQL视图检查选项详解:CASCADE与LOCAL的差异与应用场景,"['数据库', 'SQL', 'MySQL']
摘要由CSDN通过智能技术生成

逻辑回归(Logistic Regression)是一个二分类问题,指预测的y值只有两个取值(1或0),通常称为正类(positive class)和负类(negative class),比如:肿瘤恶性和良性分类,邮件是垃圾邮件还是正常邮件等。当然,二分类问题可以扩展到多分类问题。

1.Logistic函数

如果我们继续使用线性回归来预测y的值,那么预测结果可能大于1或者小于0。我们想让y的预测结果分布在区间(0,1)内,就需要使用一个函数对y值进行归一化处理,这个函数称为Logistic函数,也称为Sigmoid函数。公式如下:

        \large g(z)=\frac{1}{1+e^{-z}}

该函数图象如下图所示。由图可知,当z趋近于无穷大时,g(z)趋近于1;当z趋近于无穷小时,g(z)趋近于0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值