逻辑回归(Logistic Regression)是一个二分类问题,指预测的y值只有两个取值(1或0),通常称为正类(positive class)和负类(negative class),比如:肿瘤恶性和良性分类,邮件是垃圾邮件还是正常邮件等。当然,二分类问题可以扩展到多分类问题。
1.Logistic函数
如果我们继续使用线性回归来预测y的值,那么预测结果可能大于1或者小于0。我们想让y的预测结果分布在区间(0,1)内,就需要使用一个函数对y值进行归一化处理,这个函数称为Logistic函数,也称为Sigmoid函数。公式如下:
该函数图象如下图所示。由图可知,当z趋近于无穷大时,g(z)趋近于1;当z趋近于无穷小时,g(z)趋近于0