LeetCode Algorithm 0060 - Permutation Sequence (Medium)
Problem Link: https://leetcode.com/problems/permutation-sequence/
Related Topics: Math
Backtracking
Description
The set [1,2,3,...,n]
contains a total of n! unique permutations.
By listing and labeling all of the permutations in order, we get the following sequence for n = 3:
-
1,
"123"
-
2,
"132"
-
3,
"213"
-
4,
"231"
-
5,
"312"
-
6,
"321"
Given n n n and k k k , return the k t h k^{th} kth permutation sequence.
Note:
-
Given n will be between 1 and 9 inclusive.
-
Given k will be between 1 and n! inclusive.
Example 1:
Input: n = 3, k = 3
Output: "213"
Example 2:
Input: n = 4, k = 9
Output: "2314"
Analysis
已知集合 N N N 中有 n n n 个数字 { 1 , 2 , . . . , n } \{1,2,...,n\} {1,2,...,n} 一共有 n ! n! n! 种序列。即,排列 P n n P_n^n Pnn 种序列。则:
-
第一位有 P n 1 P_n^1 Pn1 种序列,其它位有 P n − 1 n − 1 P_{n-1}^{n-1} Pn−1n−1 种序列。即,每个数字有 P n − 1 n − 1 P_{n-1}^{n-1} Pn−1n−1 种序列。那么第 k k k 个序列第一位数字的位置 i 1 i_1 i1 为
i 1 = ⌊ ( k − 1 ) ÷ P n − 1 n − 1 ⌋ i_1 = \lfloor (k-1) \div P_{n-1}^{n-1} \rfloor i1=⌊(k−1)÷Pn−1n−1⌋
那么 取出 第一位数字 n 1 n_1 n1 为
n 1 = N [ i 1 ] , 取出后: N ∩ { n 1 } = ϕ n_1 = N \left[ i_1 \right], \quad \text{取出后:} N \cap \{ n_1 \} = \phi n1=N[i1],取出后:N∩{n1}=ϕ
即,在第一位数字从 1 1 1 到 n − 1 n-1 n−1 共有 n 1 − 1 n_1-1 n1−1 个 P n − 1 n − 1 P_{n-1}^{n-1} Pn−1n−1 序列。
之后到达第 k k k 个序列还需要 k 1 k_1 k1 个序列,即
k − 1 = k 1 ( m o d    P n − 1 n − 1 ) k-1 = k_1 (mod \; P_{n-1}^{n-1}) k−1=k1(modPn−1n−1) -
同理,第二位数字的位置 i 2 i_2 i2 为
i 2 = ⌊ k 1 ÷ P n − 2 n − 2 ⌋ i_2 = \lfloor k_1 \div P_{n-2}^{n-2} \rfloor i2=⌊k1÷Pn−2n−2⌋
到达第 k k k 个序列还需要 k 2 k_2 k2 个序列,即
k 1 = k 2 ( m o d    P n − 2 n − 2 ) k_1 = k_2 (mod \; P_{n-2}^{n-2}) k1=k2(modPn−2n−2) -
最终,第 i i i 位数字的位置 i i i 为
i = ⌊ k i − 1 ÷ P n − i n − i ⌋ i = \lfloor k_{i-1} \div P_{n-i}^{n-i} \rfloor i=⌊ki−1÷Pn−in−i⌋
到达第 k k k 个序列还需要 k i k_i ki 个序列,即
k i − 1 = k i ( m o d    P n − i n − i ) k_{i-1} = k_i (mod \; P_{n-i}^{n-i}) ki−1=ki(modPn−in−i)
举例 n = 5 , k = 8 n=5, k=8 n=5,k=8 ,则:
num | i i i | k − 1 = 7 k-1=7 k−1=7 | N = { 1 , 2 , 3 , 4 , 5 } N = \{ 1, 2, 3, 4, 5 \} N={1,2,3,4,5} | n = 5 n=5 n=5 |
---|---|---|---|---|
1 | i 1 = ⌊ 7 ÷ 4 ! ⌋ = 0 i_1 = \lfloor 7 \div 4! \rfloor = 0 i1=⌊7÷4!⌋=0 | k 1 = 7   m o d   4 ! = 7 k_1 = 7 \, mod \, 4! = 7 k1=7mod4!=7 | N = { 1 , 2 , 3 , 4 , 5 } N = \{ 1, 2, 3, 4, 5 \} N={1,2,3,4,5} | n 1 = N [ 0 ] = 1 n_1 = N[0] = 1 n1=N[0]=1 |
2 | i 2 = ⌊ 7 ÷ 3 ! ⌋ = 1 i_2 = \lfloor 7 \div 3! \rfloor = 1 i2=⌊7÷3!⌋=1 | k 2 = 7   m o d   3 ! = 1 k_2 = 7 \, mod \, 3! = 1 k2=7mod3!=1 | N = { 2 , 3 , 4 , 5 } N = \{ 2, 3, 4, 5 \} N={2,3,4,5} | n 2 = N [ 1 ] = 3 n_2 = N[1] = 3 n2=N[1]=3 |
3 | i 3 = ⌊ 1 ÷ 2 ! ⌋ = 0 i_3 = \lfloor 1 \div 2! \rfloor = 0 i3=⌊1÷2!⌋=0 | k 3 = 1   m o d   2 ! = 1 k_3 = 1 \, mod \, 2! = 1 k3=1mod2!=1 | N = { 2 , 4 , 5 } N = \{ 2, 4, 5 \} N={2,4,5} | n 3 = N [ 0 ] = 2 n_3 = N[0] = 2 n3=N[0]=2 |
4 | i 4 = ⌊ 1 ÷ 1 ! ⌋ = 1 i_4 = \lfloor 1 \div 1! \rfloor = 1 i4=⌊1÷1!⌋=1 | k 4 = 1   m o d   1 ! = 0 k_4 = 1 \, mod \, 1! = 0 k4=1mod1!=0 | N = { 4 , 5 } N = \{ 4, 5 \} N={4,5} | n 4 = N [ 1 ] = 5 n_4 = N[1] = 5 n4=N[1]=5 |
5 | i 5 = ⌊ 0 ÷ 0 ! ⌋ = 0 i_5 = \lfloor 0 \div 0! \rfloor = 0 i5=⌊0÷0!⌋=0 | k 5 = 0   m o d   0 ! = 0 k_5 = 0 \, mod \, 0! = 0 k5=0mod0!=0 | N = { 4 } N = \{ 4 \} N={4} | n 5 = N [ 0 ] = 4 n_5 = N[0] = 4 n5=N[0]=4 |
则最终结果为13254。
Solution C++
// Author: https://blog.csdn.net/DarkRabbit
// Problem: https://leetcode.com/problems/permutation-sequence/
// Difficulty: Medium
// Related Topics: `Math` `Backtracking`
#pragma once
#include "pch.h"
namespace P60PermutationSequence
{
class Solution
{
public:
string getPermutation(int n, int k)
{
// 一共 n! 种序列
// 当第一位确定后,后面共有 (n-1)! 种序列
// 即,n个数有 n! = (n-1)! * n 种序列
// 则,第k个序列的第一位为 k / (n-1)! + 1
// 第二位是第 k % (n-1)! 个序列
// 然后求第二位 (n-2)!,以此类推
vector<int> nums;
for (int i = 1; i <= n; i++)
{
nums.push_back(i);
}
int fac = 1; // 求n-1的阶乘
for (int i = 2; i < n; i++)
{
fac *= i;
}
k--; // 数组从0开始
string seq;
int index;
for (int i = n - 1; i >= 0; i--)
{
index = k / fac; // k / (n-1)! + 1,下标和数值差1
seq.push_back(nums[index] + '0');
nums.erase(nums.begin() + index); // 删除已经使用的数字
k %= fac; // 求[n-1, n-2, ..., 1]个序列中的位置
if (i > 0)
{
fac /= i; // 求[(n-2)!, (n-3)!, ..., 0!]
}
}
return seq;
}
};
}