机器学习-笔记7

第七周呢主要是对SVM的介绍

ng首先从以前讲过的logistic regression入手

将logistic regression的两个log(h(x))和log(1-h(x))改变成如下图的两个cost函数

 

这样对于y=0,SVM将试图把调整到<=-1

堆土y=1呢,SVM将试图把调整到>=1

最后整理得到的SVM的假设是:

除了cost处和logistic regression有一点差距之外,还有一个参数C,相当于logistic regression里面的1/λ,作用相差不大

接下来讲了margin的概念和为什么有人称SVM称为large margin algorithm 

其实一句话来说就是分类后所有点到分类的超平面的距离之和最短

放在二维坐标里来说就是用一条直线分类后,两部分重最靠近该boundary的点之间的距离最长

接下来是核函数的说明

andrew ng讲得十分巧妙,至少比我在网上找的一个SVM教程讲的清楚多了

还是在平面来说, 

要确定这个boundary,可能需要一个很复杂的polynomial,一般是很难确定到底需要多少次方的polynomial,而另一个很好的技术就是确定一些不共线的点(landmark),每个点视为一个参数,这样也可以表示平面上的所有点,而且假设中的多项式只有选取的点的个数那么多。

为了确定其他点到这个点的距离用来衡量参数好坏,需要有一个函数来给出一个点和另一个点的距离,这就是核函数

视频给了一个比较常用的核函数,高斯核函数:

 

这个核函数的图像大概是如下(最高处是选择的l点),函数值(0,1],而且较好地区分了点的距离,除此之外还有其他许多核函数,应视具体情况选择使用

 

如何选取点呢,那就是选择所有的example,简单而粗暴

注意核函数中有一个参数 σ,随着 σ的增大,函数图像会越来越尖细

对于large  σ:higher bias,lower variance

      small  σ:lower bias,larger variance

事实上这周的课程除了将了一下SVM的原理之外,并没有要求实现一个SVM

而是告诉我们去使用一些软件包,比较好的有libliner和libsvm,练习中也是使用的libsvm,如果有时间可以去看看libsvm的源代码

 

本文出自 “DarkScope从这里开始(..” 博客,请务必保留此出处http://darkscope.blog.51cto.com/4254649/1010706

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值