|spoj 694|后缀数组|Distinct Substrings

spoj 694

给出一个字符串,求字符串中不相同的子串个数。

我们可以知道,字符串中的每个子串都是某个后缀的前缀,于是题目转化为求不相同的后缀的前缀问题。对于每一个 SA[k] 开始的后缀,将会增加 nSA[k]+1 个后缀,而其中 height[k] 个是和前面的字符串的前缀是相同的。所以答案就是所有 nSA[k]+1height[k] 的总和

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ms(i, j) memset(i, j, sizeof i)
#define FN2 "spoj694" 
using namespace std;

const int MAXN = 1000 + 5;

char s[MAXN];
int n, m, a[MAXN], tp[MAXN], rk[MAXN], SA[MAXN], tax[MAXN], height[MAXN];

bool cmp(int *f, int i, int k) {return f[SA[i]]==f[SA[i-1]]&&f[SA[i]+k]==f[SA[i-1]+k];}
void build() {
    for (int i=0;i<m;i++) tax[i] = 0;
    for (int i=0;i<n;i++) tax[rk[i]=a[i]]++;
    for (int i=1;i<m;i++) tax[i] += tax[i-1];
    for (int i=n-1;i>=0;i--) SA[--tax[rk[i]]] = i;
    int p;
    for (int k=1;k<=n;k*=2) {
        p = 0;
        for (int i=n-k;i<n;i++) tp[p++] = i;
        for (int i=0;i<n;i++) if (SA[i]>=k) tp[p++] = SA[i]-k;

        for (int i=0;i<m;i++) tax[i] = 0;
        for (int i=0;i<n;i++) tax[rk[tp[i]]]++;
        for (int i=1;i<m;i++) tax[i] += tax[i-1];
        for (int i=n-1;i>=0;i--) SA[--tax[rk[tp[i]]]] = tp[i];

        swap(rk, tp), p = 0, rk[SA[0]] = 0;
        for (int i=1;i<n;i++) rk[SA[i]] = cmp(tp, i, k) ? p : ++p;
        if (++p>=n) break;
        m = p;
    }
}
void getH() {
    int k = 0;
    for (int i=0;i<n;i++) {
        if (k) k--;
        int j = SA[rk[i]-1];
        while (a[i+k]==a[j+k]) k++;
        height[rk[i]] = k;
    }
}
void init() {
    scanf("%s", s);
    n = strlen(s) + 1;
    for (int i=0;i<n-1;i++) a[i] = s[i];
    m = 128, a[n-1] = 0;
}
void solve() {
    build(), getH();
    int ans = 0;
    for (int i=1;i<n;i++) {
        ans += (n-1) - SA[i] - height[i];
    }
    printf("%d\n", ans);
}
int main() {
    #ifndef ONLINE_JUDGE
    freopen(FN2".in","r",stdin);freopen("1.out","w",stdout);
    #endif
    int kase; scanf("%d", &kase);
    while(kase--) init(), solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值