Distinct Substrings(后缀数组的运用&&高度数组的运用)

题目链接

SPOJ-DISUBSTR

题意

给定一个字符串s,求s的所有子串不重复的个数。

分析

观察后缀数组,注意到子串一定是后缀数组中的后缀的前缀的一部分。即每一个后缀贡献len个子串(len是后缀的长度)。现在要去掉重复的子串,也就是去掉后缀的公共前缀,因为公共前缀贡献的子串是相同的。所以只需用所有的子串数减去公共前缀的长度和。

代码

#include <bits/stdc++.h>
#define rank ranka
using namespace std;
const int maxn=2e4+100;
int n,k,rank[maxn],tmp[maxn],sa[maxn],lcp[maxn];
string s;

bool cmp(int i,int j)
{
    if(rank[i]!=rank[j])
        return rank[i]<rank[j];
    else
    {
        int ri=i+k<=n?rank[i+k]:-1;
        int rj=j+k<=n?rank[j+k]:-1;
        return ri<rj;
    }
}
void get_sa()
{
    n=s.size();
    for(int i=0; i<=n; i++)
    {
        sa[i]=i;
        rank[i]=i<n?s[i]:-1;
    }
    for(k=1; k<=n; k*=2)
    {
        sort(sa,sa+n+1,cmp);
        tmp[sa[0]]=0;
        for(int i=1; i<=n; i++)
            tmp[sa[i]]=tmp[sa[i-1]]+(cmp(sa[i-1],sa[i])?1:0);
        for(int i=0; i<=n; i++)
            rank[i]=tmp[i];
    }

}
void get_lcp()
{
    for(int i=0; i<=n; i++)
        rank[sa[i]]=i;
    int h=0;
    lcp[0]=0;
    for(int i=0; i<n; i++)
    {
        int j=sa[rank[i]-1];
        if(h)
            h--;
        for(; i+h<n && j+h<n; h++)
            if(s[i+h]!=s[j+h])
                break;
        lcp[rank[i]-1]=h;
    }
}
int main()
{
    int N;
    cin>>N;
    while(N--)
    {
        cin>>s;
        get_sa();
        get_lcp();
        long long ans=(1+n)*n/2;
        for(int i=1;i<n;i++)
            ans-=lcp[i];
        cout<<ans<<endl;
    }
}

参考模板

高度数组模板
后缀数组模板

阅读更多
想对作者说点什么? 我来说一句
相关热词

没有更多推荐了,返回首页