f
(
x
)
=
sin
x
−
ln
(
x
+
1
)
f(x)=\sin x- \ln{(x+1)}
f(x)=sinx−ln(x+1)
证明:
1.
∃
!
x
∈
(
−
1
,
π
2
)
,
f
′
(
x
)
1.∃!x \in (-1,\dfrac{\pi}{2}),f'(x)
1.∃!x∈(−1,2π),f′(x)取到极大值.
2.
f
(
x
)
2.f(x)
2.f(x)有且仅有2个零点.
思路:
1.1
1.1
1.1求二阶导
f
′
′
(
x
)
f''(x)
f′′(x)
1.2
1.2
1.2研究
f
′
′
(
x
)
f''(x)
f′′(x)在
(
−
1
,
π
2
)
(-1,\dfrac{\pi}{2})
(−1,2π)的单调性
1.3
1.3
1.3根据单调性找特殊点运用零点存在性定理
零 点 个 数 { A E { 解 方 程 构 造 + 零 点 存 在 性 定 理 T E { 猜 特 殊 点 零 点 存 在 性 定 理 零点个数\begin{cases} AE \begin{cases} 解方程\\ 构造+零点存在性定理 \end{cases}\\ TE \begin{cases} 猜特殊点\\ 零点存在性定理 \end{cases} \end{cases} 零点个数⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧AE{解方程构造+零点存在性定理TE{猜特殊点零点存在性定理
A
E
AE
AE:代数方程
T
E
TE
TE:超越方程