2019年全国1卷理数第20题

本文深入探讨了函数f(x)=sinx-ln(x+1)的性质,证明了其一阶导数在特定区间内存在唯一极大值,并通过代数与超越方程分析,展示了该函数有且仅有两个零点。采用数学分析方法,结合零点存在性定理,揭示了函数的内在特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

f ( x ) = sin ⁡ x − ln ⁡ ( x + 1 ) f(x)=\sin x- \ln{(x+1)} f(x)=sinxln(x+1)
证明:
1. ∃ ! x ∈ ( − 1 , π 2 ) , f ′ ( x ) 1.∃!x \in (-1,\dfrac{\pi}{2}),f'(x) 1.!x(1,2π),f(x)取到极大值.
2. f ( x ) 2.f(x) 2.f(x)有且仅有2个零点.


思路:
1.1 1.1 1.1求二阶导 f ′ ′ ( x ) f''(x) f(x)
1.2 1.2 1.2研究 f ′ ′ ( x ) f''(x) f(x) ( − 1 , π 2 ) (-1,\dfrac{\pi}{2}) (1,2π)的单调性
1.3 1.3 1.3根据单调性找特殊点运用零点存在性定理

零 点 个 数 { A E { 解 方 程 构 造 + 零 点 存 在 性 定 理 T E { 猜 特 殊 点 零 点 存 在 性 定 理 零点个数\begin{cases} AE \begin{cases} 解方程\\ 构造+零点存在性定理 \end{cases}\\ TE \begin{cases} 猜特殊点\\ 零点存在性定理 \end{cases} \end{cases} AE{+TE{


A E AE AE:代数方程
T E TE TE:超越方程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值