原 理 : S n , S n − 1 ⇒ a n 原理:S_{n},S_{n-1}\Rightarrow a_{n} 原理:Sn,Sn−1⇒an
Q
:
a
1
=
−
1
,
S
n
n
=
2
a
n
n
+
1.
求
a
n
.
Q:a_{1}=-1,\dfrac {S_{n}}{n}=\dfrac {2a_{n}}{n}+1.求a_{n}.
Q:a1=−1,nSn=n2an+1.求an.
A
:
a
n
=
−
2
n
+
1
A:a_{n}=-2^{n}+1
A:an=−2n+1
Q
:
a
1
=
1
,
S
n
=
4
−
(
1
+
2
n
)
a
n
.
求
a
n
.
Q:a_{1}=1,S_{n}=4-\left( 1+\dfrac {2}{n}\right) a_{n}.求a_{n}.
Q:a1=1,Sn=4−(1+n2)an.求an.
A
:
a
n
=
n
2
n
−
1
A:a_{n}=\dfrac {n}{2^{n-1}}
A:an=2n−1n