利用数列的前n项和求通项公式

本文介绍了如何利用数列的前n项和(Sn)来求解数列的通项公式(an)。通过两个具体的例子,分别给出当a1=-1且Sn=n²an+1,以及a1=1且Sn=4-(1+n²)an时,数列an的通项公式,解答结果分别为an=-2n+1和an=2n-1/n。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原 理 : S n , S n − 1 ⇒ a n 原理:S_{n},S_{n-1}\Rightarrow a_{n} :Sn,Sn1an


Q : a 1 = − 1 , S n n = 2 a n n + 1. 求 a n . Q:a_{1}=-1,\dfrac {S_{n}}{n}=\dfrac {2a_{n}}{n}+1.求a_{n}. Q:a1=1,nSn=n2an+1.an.
A : a n = − 2 n + 1 A:a_{n}=-2^{n}+1 A:an=2n+1


Q : a 1 = 1 , S n = 4 − ( 1 + 2 n ) a n . 求 a n . Q:a_{1}=1,S_{n}=4-\left( 1+\dfrac {2}{n}\right) a_{n}.求a_{n}. Q:a1=1,Sn=4(1+n2)an.an.
A : a n = n 2 n − 1 A:a_{n}=\dfrac {n}{2^{n-1}} A:an=2n1n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值