PCA
原型:class sklearn.decomposition.PCA(n_components=None,copy=True,whiten=False)
参数:
属性:
方法:
注:该方法基于SVD分解,无法解决稀疏项,并无法处理超大规模数据,因为其要求所有数据一次加入内存。
代码实例:
加载包
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets,decomposition
加载数据
def load_data():
‘’’
加载用于降维的数据
:return: 一个元组,依次为训练样本集和样本集的标记
‘’’
iris=datasets.load_iris()#