中国的电网经过几十年的发展,目前全国用电覆盖率超过98%,220千伏及以上输电线路长度超过790000千米。随着电力系统的快速发展,电网结构和运行模式愈加复杂,对电网的故障应急处置能力要求也越来越严格。依赖于人工经验的传统调度决策机制越来越难以应对复杂大电网的快速故障分析和故障处置。
当系统发生故障后,工作人员需要快速定位故障位置和原因,及时派遣人员对故障进行检修并做好相应的记录。整个处置调度工作高度依赖调度人员以往的经验,甚至需要反复查阅大量的历史资料,如故障处置要点,故障案例等文件。传统以关键字进行文本检索的方法虽然能够定位段落,但是检索结果碎片化、缺乏组织,经常出现检索不全、答非所问的情况,容易产生疏忽遗漏,使得故障应急处置工作的效率降低。
针对上述电网故障处理应用场景中的问题,达观推出电力故障模式知识图谱,借助自然语言处理、深度学习、图计算等智能化技术从非结构化的故障处置文档中抽取出故障相关知识,并将这些知识组织成结构化、可视化的表示形式。借助知识图谱的智能问答检索、故障归因分析等功能,在电网故障发生时,帮助调度员快速分析事故原因,全面地掌握故障处理的关键信息,并进行辅助决策,以提高