如何优雅地展示机器学习项目!

本文介绍了Streamlit,一个用于快速搭建Web App的Python开源工具,特别适合展示机器学习项目。Streamlit无需前端知识,支持实时刷新和交互式界面。文章详细讲解了Streamlit的安装、APP模型、网页布局、常用工具,如显示数据、交互控件和图表,以及重要功能如缓存和录屏。此外,还分享了Streamlit的优秀Demo,包括自动驾驶目标检测和GAN面部生成项目。
摘要由CSDN通过智能技术生成
↑↑↑关注后"星标"Datawhale每日干货 & 每月组队学习,不错过
 Datawhale干货 
作者:杨剑砺,Datawhale成员,数据分析师
很多数据科学工作者都存在这样一个痛点,由于没有能点亮网页前端的技能树,导致在项目展示或项目合作时,无法快速开发出这样一套用户界面以供使用。而今天要介绍的Streamlit正是为了应对这一痛点而生的。Streamlit是一个机器学习工程师专用的,专门针对机器学习和数据科学团队的应用开发框架,是目前开发自定义机器学习工具的最快的方法。可以认为它的目标是取代Flask在机器学习项目中的地位,可以帮助机器学习工程师快速开发用户交互工具。

本文目录:

     1. Streamlit是什么          2. 如何开始一个Streamlit项目          3. Streamlit架构与设计初探

    • APP模型

    • 网页布局

     4. 常用工具总结

    • ‍显示文本

    • 显示数据

    • 显示交互控件

    • 显示图表

    • 其他工具

    • 侧边栏

‍     5. 重要功能

    • 缓存机制

    • 录屏功能

     6. 近期重大更新
     7. 优秀demo

    • 自动驾驶目标检测

    • GAN面部生成项目

一、Streamlit是什么?

Streamlit是一个强大的python开源工具包,可以用来快速搭建web app,以优雅地展示你的机器学习或数据科学项目。

Streamlit的优势在于:

  • 不需要任何网页前端设计基础即可轻松搭建web app

  • 由于web本身会随着代码块自动刷新,写程序时可以及时观察到每一步代码改动对于网页的显示效果影响,方便调试

  • 交互式界面可以优雅地展示数据科学项目

  • streamlit的代码框架遵循从上到下的运行逻辑,极易理解,所见即所得

二、如何开始一个Streamlit项目

在安装streamlit之前,需要注意python版本至少为3.6。使用pip安装streamlit库

$ pip install streamlit

在python脚本中导入包

import streamlit as st

启动一个streamlit app有两种方式(命令行)。

1)直接运行本地的python文件

$ streamlit run myapp.py

2)运行远程url,这个功能可以直接运行github中的链接

$ streamlit run https://raw.githubusercontent.com/streamlit/demo-uber-nyc-pickups/master/app.py

可以尝试运行以下命令启动官网提供的demo项目

$ streamlit hello

三、Streamlit架构与设计初探

在开始介绍streamlit提供的诸多小工具之前,需要简单介绍下streamlit的架构和布局设计思路。

3.1 APP模型

下图为官网展示的app模型架构图,一个streamlit app是这样工作的:

  • streamlit会将python脚本按顺序从上往下运行

  • 每次用户打开指向该app服务的网页时,整个脚本会被重新执行

  • 在脚本运行的过程中,streamlit会将数据表,图像,控件等实时地显示在网页上

  • 在运行过程中,streamlit会优先调用缓存(需要用户在程序中设置)避免高昂计算过程

  • 每次用户和控件进行交互时,脚本会被重新执行,图像,控件等被重新显示为新的值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值