Datawhale助教团队名单公示!

01ca0e05eb9f43a407287c81995ae99b.png

「运营助教」

学习的组织者,学习氛围的塑造者

「专业助教」

学习的引导者,是学习者的榜样

陪伴是一种力量。

Datawhale助教团队名单

Datawahale AI夏令营第二期助教团队

1.   谢   聪    南京大学    

2.   Chase    宾夕法尼亚大学     

3.   管柯琴    清华大学  

4.   董佳俊    天津大学     

5.   陈德育    伍伦贡大学

6.   孙博辰    北京信息科技大学

7.   胡晓龙    中国石油大学(华东)

8.   周   焕    武汉商学院   

9.   韩佳璐    太原理工大学     

10.  柴   艺    河南工程学院   

11.  陈馨远    甘肃政法大学    

12.  苏向标    广州大学    

13.  张凯旗    河南工程学院    

14.  张亚萍    青岛滨海学院   

16.  汪太行    青岛科技大学

17.  谢彩承    杭州电子科技大学    

18.  张世斌    甘肃政法大学    

19.  陈嘉诺    广州大学

20.  王建义    南京中医药大学  

21.  徐小曼    青岛科技大学    

22.  王莹莹    东北大学    

23.  杨晨旭    太原理工大学

24.  杨   璐    北京邮电大学    

25.  王泽宇    太原理工大学    

26.  陈思州    成都信息工程大学   

27.  黎子昊    大连交通大学    

28.  姜舒凡    华东理工大学  

29.  左春生    北京联合大学 

30.  霍潇潇    厦门大学    

31.  谢小玲    中山大学    

32.  刘志文    山东女子学院    

33.  李雨芹    华南理工大学广州学院    
34.  陈丽群    吉林大学    

35.  毛林林    重庆大学    

36.  邢思宇    河北农业大学    

37.  龚乾俊    哈尔滨工业大学(威海)

38.  蒋馨怡    桂林电子科技大学   

39.  蒋登林    佛山大学    

40.  刘伟鸿    江南大学    

41.  黄   煜    桂林电子科技大学    

42.  陈辅元    甘肃政法大学   

43.  杨凯隆    西安交通大学   

44.  陈   飞    西安建筑科技大学    

45.  余   洋    南京航空航天大学    

46.  明   楷    北京理工大学   

47.  陈杰豪    新南威尔士大学    

48.  吴汉钦    澳门理工大学    

49.  怀国威    香港科技大学(广州)    

50.  高   淼    杭州电子科技大学    

51.  王子丞    Monash University

52.  张成昱    西安电子科技大学   

53.  邓一鑫    湖北工业大学    

54.  张宏博    北京工商大学    

55.  白雪城    沈阳理工大学    

56.  陈海顺    西安电子科技大学    

57.  程   宏    韩国光云大学   

58.  王文博    昌吉学院    

59.  王家庆    南京工程学院    

60.  刘   晓    河南师范大学    

61.  杨   卓    西安电子科技大学    

62.  张洪瑞    哈尔滨工业大学(威海)

63.  常   普    安徽工程大学
64.  何欣远    福建师范大学
65.  M I O     高中生

66.  十   一    在职   

67.  李碧涵    在职

68.  叶前坤    在职

69.  蒋文力    在职

70.  彭   琛    在职

71.  步嘉同    在职

72.  陈平安    在职

73.  王思璠    在职

74.  徐韵婉    在职    

75.  闫永强    在职    

76.  张凌宇    在职    

77.  荞   麦    在职    

78.  牛宝华    在职        

79.  曾鑫民    在职    

80.  戳戳龙    在职   

81.  武   帅    在职   

82.  余卓凡    在职    

83.  杨   煜    在职    

84.  黄玉琳    在职  

85.  张宏辉    在职   

86.  胡锐锋    在职     

87.  夏   静    在职

88.  杜晓东    在职

89.  路建飞    在职

90.  魏宇昕    在职

91.  吴   傲    在职

92.  陈非池    在职  

93.  杨兰千祥 在职  

94.  王健林    在职 

-End-

「夏令营只是一个开始」

「我们将与你在Datawhale一起成长」

3dacfcbbad19467cf32a88dea2b925b2.png

基于Swin Transformer与ASPP模块的图像分类系统设计与实现 本文介绍了一种结合Swin Transformer与空洞空间金字塔池化(ASPP)模块的高效图像分类系统。该系统通过融合Transformer的全局建模能力和ASPP的多尺度特征提取优势,显著提升了模型在复杂场景下的分类性能。 模型架构创新 系统核心采用Swin Transformer作为骨干网络,其层次化窗口注意力机制能高效捕获长距离依赖关系。在特征提取阶段,创新性地引入ASPP模块,通过并行空洞卷积(膨胀率6/12/18)和全局平均池化分支,实现多尺度上下文信息融合。ASPP输出经1x1卷积降维后与原始特征拼接,有效增强了模型对物体尺寸变化的鲁棒性。 训练优化策略 训练流程采用Adam优化器(学习率0.0001)和交叉熵损失函数,支持多GPU并行训练。系统实现了完整的评估指标体系,包括准确率、精确率、召回率、特异度和F1分数等6项指标,并通过动态曲线可视化模块实时监控训练过程。采用早停机制保存最佳模型,验证集准确率提升可达3.2%。 工程实现亮点 1. 模块化设计:分离数据加载、模型构建和训练流程,支持快速迭代 2. 自动化评估:每轮训练自动生成指标报告和可视化曲线 3. 设备自适应:智能检测CUDA可用性,无缝切换训练设备 4. 中文支持:优化可视化界面的中文显示与负号渲染 实验表明,该系统在224×224分辨率图像分类任务中,仅需2个epoch即可达到92%以上的验证准确率。ASPP模块的引入使小目标识别准确率提升15%,特别适用于医疗影像等需要细粒度分类的场景。未来可通过轻量化改造进一步优化推理速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值