数据分析大赛医药电商问题——时间序列SARIMA模型

本文介绍了使用Python进行数据分析的过程,包括数据预处理、时间序列分析和可视化。重点讨论了如何利用Numpy、Pandas、Matplotlib和Seaborn库进行数据清洗、销售额统计和图表绘制。此外,还详细展示了如何应用SARIMA模型进行时间序列预测,包括差分、平稳性检验、模型选择和误差评估。
摘要由CSDN通过智能技术生成

日志 

        这次参加数据分析大赛,获得了一等奖,有些心得聊以分享。一方面记录自己在数据挖掘处理方面的学习成果,另一方面也给刚踏足数据分析方面有学习困扰的uu们一些启发。这次比赛,我主要用的分析工具是Python,主要用到的库是Numpy,matplotlib,pandas,seaborn还有一系列时间序列分析相关的库,代码中会提到。主要用到的方法有pandas库的分类汇总,matplotlib和seaborn库的数据可视化和完整的一套时间序列拟合分析流程。希望大家看我的文章可以有所收获,也希望行业大佬们看到可以给我一些指导意见。

问题重述

75e638e871a44066a37048e639a4a781.png

data数据如下所示: 

9586e8eb709c488ca559ace55d1d05bc.png

 店铺情况分析

文本处理函数

        在discount一栏我将文本转换成数字时遇到了困难,发现用int函数不能直接转换,因此我自己写了一个函数,主要思想是将discount栏下的字符串先分割,然后提取出其中的数字。


## 文本转化数字处理函数
def text_convert2num(series):
    series_pro = series.str.split('')
    series_wanted = []
    i = 0
    k = len(series)
    while i < k:
        if len(series_pro[i]) == 4:
            wanted = eval(series_pro[i][1])
        elif len(series_pro[i]) == 6:
            wanted = eval(series_pro[i][1]) + 0.1*eval(series_pro[i][3])
        else:
            wanted = 10
        series_wanted.append(wanted)
        i = i+1
    return series_wanted

销售额条形图

        销售额是一个新指标,是将price、sold和discount相乘得到。通过groupby函数分类汇总得到各店铺的销售额后便可以绘制条形图了。为了直观看出市场分配比例,还可以用饼图进行可视化。

## 销售额对店铺的分类汇总及可视化
sell_agg = data.groupby('shop_name')['销售额'].sum()
sell_agg = sell_agg.sort_values(ascending=False)
shop_pie_data = sell_agg.head(10)
shop_pie_data['其他'] = sum(sell_agg[10:])
shop_pie_data = shop_pie_data.sort_values(ascending=False)
plt.figure(dpi=400,figsize=(15,10))
plt.rcParams['font.sans-serif'] = ['SimHei']  # 正常显示中文
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号
X = shop_pie_data.index  # X轴数据
Y = shop_pie_data  # Y轴数据
plt.style.use('ggplot')       # 添加网格线
plt.title("销售额图表")       # 柱状图标题
plt.xlabel("店名")         # X轴名称
plt.ylabel("销售额")         # Y轴名称
plt.xticks(rotation = 90)
plt.plot(X, Y, color="blue") # 绘制柱状
plt.bar(X,Y)
plt.figure(dpi=400,figsize=(15,10))
explode = (0.1,0.1,0,0,0,0,0,0,0,0,0)
plt.pie(Y,labels=X,autopct='%3.1f%%',shadow=True,explode=explode)
plt.tight_layout()

e73c2d5f81f543b6b89ffcd6c081444c.png

b4917c8e481d4a669f9c164f8abcc401.png

销售额时序图 

        时序图的做法就是按date_time字段对销售额进行分类汇总,得到的数据可以直接用matplotlib作图。

## 销量最好的药店时序图绘制
data2 = data.loc[data['shop_name'] == '阿里健康大药房',:]
plt.figure(dpi=400,figsize=(12,8))
plt.rcParams['font.sans-serif'] = ['SimHei']  # 正常显示中文
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号
sell_time = data2.groupby('date_time')['销售额'].sum()
X = sell_time.index  # X轴数据
Y = sell_time   # Y轴数据
plt.style.use('ggplot')       # 添加网格线
plt.title("销售额图表")       # 柱状图标题
plt.xlabel("日期")         # X轴名称
plt.ylabel("销售额")         # Y轴名称
plt.xticks(rotation = 90)
plt.plot(X, Y, color="red") # 绘制折线图

3adc5fb392234281b684950f98d24dd5.png

药品分析

字符切片函数

        该函数主要用于分析parameter函数中的信息。由于parameter函数中分隔符众多,不能通过一个split解决,因此在一次切片后,我利用for循环对每行进行了二次切片,将切片内容以列表形式放入parameter中。

## 字符串二分割处理函数
def colon_split(line,matrix):
    row = matrix[line]
    temp = []
    for i in range(len(row)):
        element = row[i].split(':')
        temp.append(element)
    row = temp
    temp2 = []
    for j in range(len(row)):
        for m in range(2):
            temp2.append(row[j][m])
    matrix[line] = temp2
    return matrix[line]   

药品名称提取函数

        关于药品有2个指标可以用来分析,一个是parameter中的药品名称,另一个是药品id。为了提取药品名称,我编写了如下函数,基于切片函数操作过的parameter通过索引提取出药品名称。

## 药品名称填充函数
def medicine_fill(matrix,line):
    row = matrix[line]
    position = 0
    if row.count('药品名称'):
        position = row.index('药品名称')
        medicine_name = row[position+1]
    else:
        medicine_name = '无具体药品名称'
    return medicine_name

药品月销售额时序图绘制函数

        此处作图用的标准是药品id。传统的matplotlib作图,不再赘述。

# 药品月销售额曲线绘制函数
def id_plot(a):
    id = id_select[a]
    data3 = data.loc[data['id'] == id]
    monthly_sell = data3.groupby('date_time')['销售额'].sum()
    X = monthly_sell.index  # X轴数据
    Y = monthly_sell  # Y轴数据
    plt.style.use('ggplot')       # 添加网格线
    plt.title("销售额图表")       # 柱状图标题
    plt.xlabel("日期")         # X轴名称
    plt.ylabel("销售额")         # Y轴名称
    plt.xticks(rotation = 90)
    plt.plot(X, Y, color="red",marker='o') # 绘制柱状

f19785d54c0e4670a516a682eddda0ff.png

品牌分析

品牌提取函数

        原理与药品名称提取函数类似,不再赘述。

## 品牌名称填充函数
def brand_fill(matrix,line):
    position = 0
    row = matrix[line]
    if row.count('品牌'):
        position = row.index('品牌')
        brand_name = row[position+1]
    else:
        brand_name = '无具体品牌名称'
    return brand_name

堆面积图 

        堆面积图用于分析对比两张折线图非常好用。用的是stackplot函数。

## 分析十大品牌销量最好的原因
## 原因1: 药品销售种类广泛
top10brand_data = data.loc[data['brand'] == top10brand[0],:]
for i in range(1,10):
    data_temp = data.loc[data['brand'] == top10brand[i],:]
    top10brand_data = pd.concat([top10brand_data,data_temp])
else_brand = sell_well_brand_sorted[10:]
else_brand = else_brand.index
else_brand_data = data.loc[data['brand'] == else_brand[0],:]
for i in range(1,526):
    data_temp = data.loc[data['brand'] == else_brand[i],:]
    else_brand_data = pd.concat([else_brand_data,data_temp])
## 时间维度:堆面积图绘制
header = top10brand_data.groupby('date_time')['销售额'].sum()
tailer = else_brand_data.groupby('date_time')['销售额'].sum()
X = header.index
Y = np.vstack([header.tolist(),tailer.tolist()])
plt.figure(dpi=400,figsize=(12,8))
plt.title('销量堆面积图')
plt.xlabel('月份')
plt.ylabel('销量')
labels=['前十','其他']
plt.stackplot(X,Y,labels=labels)
plt.legend(loc='upper left')

071cb9d7558d488cac51a9f91587d9c5.png

SARIMA

时序图

        该时序图就是我们需要进行预测的原材料,先画出来康康。

sale_time_series = data.groupby('date_time')['销售额'].sum()
plt.figure(dpi=400,figsize=(12,8))
plt.rcParams['font.sans-serif'] = ['SimHei']  # 正常显示中文
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号
X = sale_time_series.index  # X轴数据
Y = sale_time_series   # Y轴数据
plt.style.use('ggplot')       # 添加网格线
plt.title("总销售额时序图")       # 柱状图标题
plt.xlabel("日期")         # X轴名称
plt.ylabel("销售额")         # Y轴名称
plt.xticks(rotation = 90)
plt.plot(X, Y, color="red") # 绘制折线图

cdec21f5f70b41a2931ae7b644899411.png

 序列差分

        即对时间序列进行一阶差分和二阶差分,看看是否平稳。一般情况下,一阶差分就够了。科学起见,用平稳性检验再分析一下。

ts = sale_time_series
n_sample = ts.shape[0]
n_train = int(0.9 * n_sample)+1
n_forecast = n_sample - n_train
ts_train = ts.iloc[:n_train]
ts_test = ts.iloc[n_train:]
diff_df = ts.copy()
diff_df.index = ts.index
diff_df = pd.DataFrame(diff_df)
# 一阶差分
diff_df['diff_1'] =  diff_df.diff(1).dropna()
# 二阶差分
diff_df['diff_2'] = diff_df['diff_1'].diff(1).dropna()
# 作图
plt.figure(dpi=400,figsize=(12,8))
diff_df.plot(subplots=True,figsize=(18,20))
plt.show()
''' 通过作图不难发现,一阶差分的时序图已经十分平稳,因此采用一阶差分的进行分析'''
ts_diff=ts.copy()
ts_diff.index=ts.index
ts_diff=ts.diff(1).dropna()
plt.plot(ts_diff)

0fbe680c4c1e44bca6259a2292c456e5.png

平稳性检验

        平稳性检验最重要的是P值,如果P值小于0.05检验通过。

## 平稳性检验
from statsmodels.tsa.stattools import adfuller
ADF1 = adfuller(ts)  # 原始数据
ADF1 = pd.DataFrame(ADF1)
ADF1.to_excel('ADF_original_series.xlsx')
ADF2 = adfuller(diff_df['diff_1'].dropna())  # 一阶差分
ADF2 = pd.DataFrame(ADF2)
ADF2.to_excel('ADF_diff1.xlsx')
ADF3 = adfuller(diff_df['diff_2'].dropna())  # 二阶差分
ADF3 = pd.DataFrame(ADF3)
ADF3.to_excel('ADF_diff2.xlsx')

918d243018204d22b92df0a67f950028.png

白噪声检验

        时间序列有2次白噪声检验,这是第一次。这一次的目的是为了验证该序列不是随机序列。因为随机序列是没有办法进行建模分析的。也是看显著性水平(lb_value)是否小于0.05,如果个延迟系数下的显著性水平均小于0.05,则该序列不是随机序列,检验通过。

## 白噪声检验
from statsmodels.stats.diagnostic import acorr_ljungbox
acorr_ljungbox(ts_diff, lags = 10)

4b23257816b9456dadcf1694a21b29e3.png

  

ACF和PACF图

        ACF和PACF图用于确定模型中p和q两个参数,但一般很少通过图像去直接确定。而是通过AIC和BIC准则去具体判断。该类图中横坐标为延迟系数,纵坐标为误差浮动值。定阶原则如下:

ARIMA模型定阶原则

模型

自相关系数

偏自相关系数

AR(p)

拖尾

P阶截尾

MA(q)

q阶截尾

拖尾

ARMA(p,q)

拖尾

拖尾

## 绘制ACF和PACF图
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
plt.figure(dpi=1000,figsize=(12,8))
pacf = plot_pacf(ts_diff, lags=10)
plt.title('PACF')
pacf.show()
plt.figure(dpi=1000,figsize=(12,8))
acf = plot_acf(ts_diff, lags=10)
plt.title('ACF')
acf.show()

397ff8691e854674b964d406d3382309.png

6901d0c0af6543ce86273d5044f5b2b2.png

时序分解

        没啥好多说,SARIMA常规操作。

## 季节性、周期性分解
from statsmodels.tsa.seasonal import seasonal_decompose
decomposition = seasonal_decompose(ts,extrapolate_trend=12)
trend = decomposition.trend   # 趋势部分
seasonal = decomposition.seasonal # 季节性部分
residual = decomposition.resid # 残留部分
plt.figure(figsize=(20,8),dpi=400)
decomposition.plot()

328af901dcbf43139faf267542828200.png

BIC准则

        BIC准则是ARIMA中确定p和q参数的常用方法,具体实现方法如下,该部分代码我是借鉴的,感谢CSDN上的大佬们!!!

# ARIMA参数检索,BIC准则绘制热力图
import itertools
import statsmodels.api as sm
p_min = 0
d_min = 0
q_min = 0
p_max = 2
d_max = 1
q_max = 2
results_bic = pd.DataFrame(index=['AR{}'.format(i) for i in range(p_min,p_max+1)],
                           columns=['MA{}'.format(i) for i in range(q_min,q_max+1)])
 
for p,d,q in itertools.product(range(p_min,p_max+1),
                               range(d_min,d_max+1),
                               range(q_min,q_max+1)):
    if p==0 and d==0 and q==0:
        results_bic.loc['AR{}'.format(p), 'MA{}'.format(q)] = np.nan
        continue
 
    try:
        model = sm.tsa.ARIMA(ts_train, order=(p, d, q),
                               #enforce_stationarity=False,
                               #enforce_invertibility=False,
                              )
        results = model.fit()
        results_bic.loc['AR{}'.format(p), 'MA{}'.format(q)] = results.bic
    except:
        continue
results_bic = results_bic[results_bic.columns].astype(float)
fig, ax = plt.subplots(figsize=(10, 8),dpi=400)
ax = sns.heatmap(results_bic,
                 mask=results_bic.isnull(),
                 ax=ax,
                 annot=True,
                 fmt='.2f',
                 )
ax.set_title('BIC')
plt.show()

6dcb1127d9d44a95ac032c89b246c60b.png

AIC准则

        与BIC准则类似,用于确定参数。相比于BIC,AIC对于SARIMA模型更加适合。本质上AIC和BIC都是优化模型,要取最小值时候的解。

## 季节性ARIMA参数检索,AIC准则确定季节性参数
import itertools
p = q = range(0, 2) # p、q一般取值不超过2
d = range(1,2)
pdq = list(itertools.product(p, d, q))
seasonal_pdq = [(x[0], x[1], x[2], 6) for x in list(itertools.product(p, d, q))]
for param in pdq:
    for param_seasonal in seasonal_pdq:
        try:
            mod = sm.tsa.statespace.SARIMAX(ts_train,
                                            order=param,
                                            seasonal_order=param_seasonal,
                                            enforce_stationarity=False,
                                            enforce_invertibility=False)
            results = mod.fit()
            print('ARIMA{}x{} - AIC:{}'.format(param, param_seasonal, results.aic))
        except:
            continue   

5a677001a8244a99b585ab2b98129b67.png  

SARIMA模型建立 

        SARIMA最后一个周期参数可以观察图像变化周期直接得到。在7个参数都确定后,模型建立、训练然后预测画图。

import statsmodels.api as sm
df = ts
mod = sm.tsa.statespace.SARIMAX(df,order=(1,1,1),seasonal_order=(1, 1, 1, 6),enforce_stationarity=False,enforce_invertibility=False)
result = mod.fit()
pred_all = result.predict()
predict_sunspots = result.forecast(3)
plt.figure(figsize=(12, 8),dpi=400)
plt.plot(df,color='red',marker='o')
plt.plot(pred_all,color='blue',marker='d')
plt.plot(predict_sunspots,color='purple',marker='d')

残差有关检验

q-q图残差检验

        绝大部分服从线性则通过检验,看图即可。

## 残差检验
resid = result.resid
from statsmodels.graphics.api import qqplot
plt.figure(dpi=400,figsize=(12,8))
qqplot(resid, line='q', fit=True) # qq图
plt.show()

cf38a8f905de4d23ba3e4e34fb0e7f4d.png

自相关检验

        得到DW=2.394,理论上该值在1~3之间都可以通过检验。

## 自相关性检验
import statsmodels.api as sm
print(sm.stats.durbin_watson(resid.values))

白噪声检验

        第二次白噪声检验,这次检验是检验的时间序列分解完后没法再分析的渣渣。就是随机的残差序列。因此该检验与第一次相反,要满足Prob值大于0.05。只有剩下的数据无法进行分析,才证明时间序列已经充分建模。

## 白噪声检验
r,q,p = sm.tsa.acf(resid.values.squeeze(), qstat=True)
data = np.c_[range(13), r[1:], q, p]
table = pd.DataFrame(data, columns=['lag', "AC", "Q", "Prob(>Q)"])
table = table.set_index('lag')
table.to_excel('白噪声检验.xlsx')

LAG

AC

Q

Prob(>Q)

0

-0.2249

1.372

0.241

1

-0.00351

1.372

0.503

2

0.058643

1.474

0.688

3

-0.23874

3.252

0.516

4

0.264553

5.551

0.352

5

0.092038

5.845

0.440

6

-0.06688

6.009

0.538

7

-0.1085

6.468

0.594

8

-0.03966

6.533

0.685

9

0.06213

6.705

0.752

10

0.019609

6.724

0.820

11

-0.00561

6.726

0.875

12

-0.10009

7.294

0.886

模型误差评估 

       MSE等误差评价指标在本题数值大的情况下显得不直观。因此我采用MAPE指标评估模型误差,该指标得到的结果是个百分比,数值不会非常巨大,更加直观。

## 模型误差评估
from sklearn import metrics
test_diff = ts_diff[-2:]
MSE = metrics.mean_squared_error(df, pred_all)
RMSE = metrics.mean_squared_error(df,pred_all)**0.5
MAE = metrics.mean_absolute_error(df, pred_all)
print(MAE)
print(RMSE)
def mape(y_true, y_pred,n):
    res_mape = np.mean(np.abs((y_pred - y_true) / y_true)) * 100 / n
    return res_mape
MAPE = mape(df,pred_all,24)
print(MAPE)

拟合图像如下: 

0b982b3bb97d40dca7e40b87c652006a.png

求得MAPE=0.725%。拟合效果不错。预测值如下:

        月份                         销售额预测值

       2022-01                     90232429.06430641元

       2022-02                     95922990.24794471元

       2022-03                     112387431.26476987元

总代码

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

## 数据导入
data = pd.read_excel('data.xlsx')

## 店名描述性统计
shop_cnt = data.groupby('shop_name').count()
shop_num = len(shop_cnt)
shop_name = shop_cnt.index
data['销售额'] = 0
data['药品名称'] = 0

## 文本转化数字处理函数
def text_convert2num(series):
    series_pro = series.str.split('')
    series_wanted = []
    i = 0
    k = len(series)
    while i < k:
        if len(series_pro[i]) == 4:
            wanted = eval(series_pro[i][1])
        elif len(series_pro[i]) == 6:
            wanted = eval(series_pro[i][1]) + 0.1*eval(series_pro[i][3])
        else:
            wanted = 10
        series_wanted.append(wanted)
        i = i+1
    return series_wanted

## 销售额的计算
series = data['discount'].fillna('无')
discount = text_convert2num(series)
data['discount'] = discount
data_cal = data.iloc[:,[5,6,7]]
sale = []
for i in range(len(data_cal)):
    num = data_cal.iloc[i,0]*data_cal.iloc[i,1]*data_cal.iloc[i,2]/10
    sale.append(num)
data['销售额'] = sale 

## 销售额对店铺的分类汇总及可视化
sell_agg = data.groupby('shop_name')['销售额'].sum()
sell_agg = sell_agg.sort_values(ascending=False)
shop_pie_data = sell_agg.head(10)
shop_pie_data['其他'] = sum(sell_agg[10:])
shop_pie_data = shop_pie_data.sort_values(ascending=False)
plt.figure(dpi=400,figsize=(15,10))
plt.rcParams['font.sans-serif'] = ['SimHei']  # 正常显示中文
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号
X = shop_pie_data.index  # X轴数据
Y = shop_pie_data  # Y轴数据
plt.style.use('ggplot')       # 添加网格线
plt.title("销售额图表")       # 柱状图标题
plt.xlabel("店名")         # X轴名称
plt.ylabel("销售额")         # Y轴名称
plt.xticks(rotation = 90)
plt.plot(X, Y, color="blue") # 绘制柱状
plt.bar(X,Y)
plt.figure(dpi=400,figsize=(15,10))
explode = (0.1,0.1,0,0,0,0,0,0,0,0,0)
plt.pie(Y,labels=X,autopct='%3.1f%%',shadow=True,explode=explode)
plt.tight_layout()

## 销量最好的药店时序图绘制
data2 = data.loc[data['shop_name'] == '阿里健康大药房',:]
plt.figure(dpi=400,figsize=(12,8))
plt.rcParams['font.sans-serif'] = ['SimHei']  # 正常显示中文
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号
sell_time = data2.groupby('date_time')['销售额'].sum()
X = sell_time.index  # X轴数据
Y = sell_time   # Y轴数据
plt.style.use('ggplot')       # 添加网格线
plt.title("销售额图表")       # 柱状图标题
plt.xlabel("日期")         # X轴名称
plt.ylabel("销售额")         # Y轴名称
plt.xticks(rotation = 90)
plt.plot(X, Y, color="red") # 绘制折线图

## 挑选10个销量最好的药品
id = data.groupby('id').count()
good_num = len(id)
good_sell = data.groupby('id')['销售额'].sum()
good_sell_sorted = good_sell.sort_values(ascending=False)
id_select = []
for i in range(10):
    id_select.append(good_sell_sorted.index[i])


# 销量最好的十大药品月销售额曲线绘制函数
def id_plot(a):
    id = id_select[a]
    data3 = data.loc[data['id'] == id]
    monthly_sell = data3.groupby('date_time')['销售额'].sum()
    X = monthly_sell.index  # X轴数据
    Y = monthly_sell  # Y轴数据
    plt.style.use('ggplot')       # 添加网格线
    plt.title("销售额图表")       # 柱状图标题
    plt.xlabel("日期")         # X轴名称
    plt.ylabel("销售额")         # Y轴名称
    plt.xticks(rotation = 90)
    plt.plot(X, Y, color="red",marker='o') # 绘制柱状

## 十大药品销量时间序列图可视化
plt.figure(dpi=400,figsize=(12,8))
plt.rcParams['font.sans-serif'] = ['SimHei']  # 正常显示中文
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号
plt.subplot(2,1,1)
id_plot(0)
plt.subplot(2,1,2)
id_plot(1)
plt.figure(dpi=400,figsize=(12,8))
plt.rcParams['font.sans-serif'] = ['SimHei']  # 正常显示中文
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号
plt.subplot(2,1,1)
id_plot(2)
plt.subplot(2,1,2)
id_plot(3)
plt.figure(dpi=400,figsize=(12,8))
plt.rcParams['font.sans-serif'] = ['SimHei']  # 正常显示中文
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号
plt.subplot(2,1,1)
id_plot(4)
plt.subplot(2,1,2)
id_plot(5)
plt.figure(dpi=400,figsize=(12,8))
plt.rcParams['font.sans-serif'] = ['SimHei']  # 正常显示中文
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号
plt.subplot(2,1,1)
id_plot(6)
plt.subplot(2,1,2)
id_plot(7)
plt.figure(dpi=400,figsize=(12,8))
plt.rcParams['font.sans-serif'] = ['SimHei']  # 正常显示中文
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号
plt.subplot(2,1,1)
id_plot(8)
plt.subplot(2,1,2)
id_plot(9)


    
## 字符串二分割处理函数
def colon_split(line,matrix):
    row = matrix[line]
    temp = []
    for i in range(len(row)):
        element = row[i].split(':')
        temp.append(element)
    row = temp
    temp2 = []
    for j in range(len(row)):
        for m in range(2):
            temp2.append(row[j][m])
    matrix[line] = temp2
    return matrix[line]   
      
## 药品名称填充函数
def medicine_fill(matrix,line):
    row = matrix[line]
    position = 0
    if row.count('药品名称'):
        position = row.index('药品名称')
        medicine_name = row[position+1]
    else:
        medicine_name = '无具体药品名称'
    return medicine_name
    
## 品牌名称填充函数
def brand_fill(matrix,line):
    position = 0
    row = matrix[line]
    if row.count('品牌'):
        position = row.index('品牌')
        brand_name = row[position+1]
    else:
        brand_name = '无具体品牌名称'
    return brand_name

## 品牌和药品名称填充工作
data4 = data['parameter'].str.split('\|\|')
data4 = data4.fillna('无详细信息')    
for i in range(len(data4)):
    if data4[i] == '无详细信息':
        continue
    else:
        data4[i] = colon_split(i,data4) 
for k in range(len(data)):
    data.iloc[k,8] = brand_fill(data4,k)
    data.iloc[k,11] = medicine_fill(data4,k)

## 药品名称图
medic_data = data.groupby('药品名称')['销售额'].sum()
medic_data = medic_data.sort_values(ascending=False)
medi_data = medic_data.head(10)
else_medi_data = medic_data[10:]
medi_data['其他'] = sum(else_medi_data)
plt.figure(dpi=400,figsize=(12,8))
plt.rcParams['font.sans-serif'] = ['SimHei']  # 正常显示中文
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号
plt.xlabel('药品名称')
plt.ylabel('销售额')
plt.title('药品销售额图(按药名参数分类)')
plt.xticks(rotation = 90)
plt.plot(medi_data,color='black')
X = medi_data.index
Y = medi_data
plt.bar(X,Y)
## 销售最高的十大品牌
sell_well_brand = data.groupby('brand')['销售额'].sum()
sell_well_brand_sorted = sell_well_brand.sort_values(ascending=False)  
top10brand = sell_well_brand_sorted.head(10).index  

## 分析十大品牌销量最好的原因
## 原因1: 药品销售种类广泛
top10brand_data = data.loc[data['brand'] == top10brand[0],:]
for i in range(1,10):
    data_temp = data.loc[data['brand'] == top10brand[i],:]
    top10brand_data = pd.concat([top10brand_data,data_temp])
else_brand = sell_well_brand_sorted[10:]
else_brand = else_brand.index
else_brand_data = data.loc[data['brand'] == else_brand[0],:]
for i in range(1,526):
    data_temp = data.loc[data['brand'] == else_brand[i],:]
    else_brand_data = pd.concat([else_brand_data,data_temp])
## 时间维度:堆面积图绘制
header = top10brand_data.groupby('date_time')['销售额'].sum()
tailer = else_brand_data.groupby('date_time')['销售额'].sum()
X = header.index
Y = np.vstack([header.tolist(),tailer.tolist()])
plt.figure(dpi=400,figsize=(12,8))
plt.title('销量堆面积图')
plt.xlabel('月份')
plt.ylabel('销量')
labels=['前十','其他']
plt.stackplot(X,Y,labels=labels)
plt.legend(loc='upper left')

## 空间维度RFM模型
header_price = top10brand_data.groupby('brand')['销售额'].sum()
tailer_price = else_brand_data.groupby('brand')['销售额'].sum()
F1 = header_price.mean()
F2 = tailer_price.mean()
print(F1,F2)
header_sold = top10brand_data.groupby('brand')['sold'].sum()
R1 = header_sold.mean()
tailer_sold = else_brand_data.groupby('brand')['sold'].sum()
R2 = tailer_sold.mean()
header_discount = top10brand_data.groupby('brand')['discount'].count()
tailer_discount = else_brand_data.groupby('brand')['discount'].count()
header_id = top10brand_data.groupby('brand')['id'].count()
tailer_id = else_brand_data.groupby('brand')['id'].count()


## 时间序列分析模型
sale_time_series = data.groupby('date_time')['销售额'].sum()
plt.figure(dpi=400,figsize=(12,8))
plt.rcParams['font.sans-serif'] = ['SimHei']  # 正常显示中文
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号
X = sale_time_series.index  # X轴数据
Y = sale_time_series   # Y轴数据
plt.style.use('ggplot')       # 添加网格线
plt.title("总销售额时序图")       # 柱状图标题
plt.xlabel("日期")         # X轴名称
plt.ylabel("销售额")         # Y轴名称
plt.xticks(rotation = 90)
plt.plot(X, Y, color="red") # 绘制折线图

## ARIMA时间序列预测模型
# 差分序列平稳化
ts = sale_time_series
n_sample = ts.shape[0]
n_train = int(0.9 * n_sample)+1
n_forecast = n_sample - n_train
ts_train = ts.iloc[:n_train]
ts_test = ts.iloc[n_train:]
diff_df = ts.copy()
diff_df.index = ts.index
diff_df = pd.DataFrame(diff_df)
# 一阶差分
diff_df['diff_1'] =  diff_df.diff(1).dropna()
# 二阶差分
diff_df['diff_2'] = diff_df['diff_1'].diff(1).dropna()
# 作图
plt.figure(dpi=400,figsize=(12,8))
diff_df.plot(subplots=True,figsize=(18,20))
plt.show()
''' 通过作图不难发现,一阶差分的时序图已经十分平稳,因此采用一阶差分的进行分析'''
ts_diff=ts.copy()
ts_diff.index=ts.index
ts_diff=ts.diff(1).dropna()
plt.plot(ts_diff)

## 平稳性检验
from statsmodels.tsa.stattools import adfuller
ADF1 = adfuller(ts)  # 原始数据
ADF1 = pd.DataFrame(ADF1)
ADF1.to_excel('ADF_original_series.xlsx')
ADF2 = adfuller(diff_df['diff_1'].dropna())  # 一阶差分
ADF2 = pd.DataFrame(ADF2)
ADF2.to_excel('ADF_diff1.xlsx')
ADF3 = adfuller(diff_df['diff_2'].dropna())  # 二阶差分
ADF3 = pd.DataFrame(ADF3)
ADF3.to_excel('ADF_diff2.xlsx')


## 白噪声检验
from statsmodels.stats.diagnostic import acorr_ljungbox
acorr_ljungbox(ts_diff, lags = 10)

## 绘制ACF和PACF图
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
plt.figure(dpi=1000,figsize=(12,8))
pacf = plot_pacf(ts_diff, lags=10)
plt.title('PACF')
pacf.show()
plt.figure(dpi=1000,figsize=(12,8))
acf = plot_acf(ts_diff, lags=10)
plt.title('ACF')
acf.show()

## 季节性、周期性分解
from statsmodels.tsa.seasonal import seasonal_decompose
decomposition = seasonal_decompose(ts,extrapolate_trend=12)
trend = decomposition.trend   # 趋势部分
seasonal = decomposition.seasonal # 季节性部分
residual = decomposition.resid # 残留部分
plt.figure(figsize=(20,8),dpi=400)
decomposition.plot()

# ARIMA参数检索,BIC准则绘制热力图
import itertools
import statsmodels.api as sm
p_min = 0
d_min = 0
q_min = 0
p_max = 2
d_max = 1
q_max = 2
results_bic = pd.DataFrame(index=['AR{}'.format(i) for i in range(p_min,p_max+1)],
                           columns=['MA{}'.format(i) for i in range(q_min,q_max+1)])
 
for p,d,q in itertools.product(range(p_min,p_max+1),
                               range(d_min,d_max+1),
                               range(q_min,q_max+1)):
    if p==0 and d==0 and q==0:
        results_bic.loc['AR{}'.format(p), 'MA{}'.format(q)] = np.nan
        continue
 
    try:
        model = sm.tsa.ARIMA(ts_train, order=(p, d, q),
                               #enforce_stationarity=False,
                               #enforce_invertibility=False,
                              )
        results = model.fit()
        results_bic.loc['AR{}'.format(p), 'MA{}'.format(q)] = results.bic
    except:
        continue
results_bic = results_bic[results_bic.columns].astype(float)
fig, ax = plt.subplots(figsize=(10, 8),dpi=400)
ax = sns.heatmap(results_bic,
                 mask=results_bic.isnull(),
                 ax=ax,
                 annot=True,
                 fmt='.2f',
                 )
ax.set_title('BIC')
plt.show()

## ARIMA模型建立
# from statsmodels.tsa.arima.model import ARIMA
# model = ARIMA(ts_train, order=(1,1,1))
# result = model.fit()
# result.summary()


## 季节性ARIMA参数检索,AIC准则确定季节性参数
import itertools
p = q = range(0, 2) # p、q一般取值不超过2
d = range(1,2)
pdq = list(itertools.product(p, d, q))
seasonal_pdq = [(x[0], x[1], x[2], 6) for x in list(itertools.product(p, d, q))]
for param in pdq:
    for param_seasonal in seasonal_pdq:
        try:
            mod = sm.tsa.statespace.SARIMAX(ts_train,
                                            order=param,
                                            seasonal_order=param_seasonal,
                                            enforce_stationarity=False,
                                            enforce_invertibility=False)
            results = mod.fit()
            print('ARIMA{}x{} - AIC:{}'.format(param, param_seasonal, results.aic))
        except:
            continue   
        
## SARIMA模型建立与预测       
import statsmodels.api as sm
df = ts
mod = sm.tsa.statespace.SARIMAX(df,order=(1,1,1),seasonal_order=(1, 1, 1, 6),enforce_stationarity=False,enforce_invertibility=False)
result = mod.fit()
pred_all = result.predict()
predict_sunspots = result.forecast(3)
plt.figure(figsize=(12, 8),dpi=400)
plt.plot(df,color='red',marker='o')
plt.plot(pred_all,color='blue',marker='d')
plt.plot(predict_sunspots,color='purple',marker='d')

## 残差检验
resid = result.resid
from statsmodels.graphics.api import qqplot
plt.figure(dpi=400,figsize=(12,8))
qqplot(resid, line='q', fit=True) # qq图
plt.show()

## 自相关性检验
import statsmodels.api as sm
print(sm.stats.durbin_watson(resid.values))

## 白噪声检验
r,q,p = sm.tsa.acf(resid.values.squeeze(), qstat=True)
data = np.c_[range(13), r[1:], q, p]
table = pd.DataFrame(data, columns=['lag', "AC", "Q", "Prob(>Q)"])
table = table.set_index('lag')
table.to_excel('白噪声检验.xlsx')

## 模型误差评估
from sklearn import metrics
test_diff = ts_diff[-2:]
MSE = metrics.mean_squared_error(df, pred_all)
RMSE = metrics.mean_squared_error(df,pred_all)**0.5
MAE = metrics.mean_absolute_error(df, pred_all)
print(MAE)
print(RMSE)
def mape(y_true, y_pred,n):
    res_mape = np.mean(np.abs((y_pred - y_true) / y_true)) * 100 / n
    return res_mape
MAPE = mape(df,pred_all,24)
print(MAPE)

结语

        希望大家都能有所收获,共同进步。谨以此记录我的一次数据分析大赛历程。

  • 6
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kummunist

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值