基于dify评测qwen3的整体效果

1.前言

Qwen3是阿里巴巴于2025年4月29日发布的一款开源混合推理模型,其特点和性能在多个方面都取得了显著突破.一张图给大家看懂Qwen3。

图片

2、 qwen3-14B模型部署

模型下载

modelscope download  Qwen/Qwen3-14B --cache_dir /app/

我是使用了4张nvidia T4卡(每张卡显存16G)

部署模型

VLLM_USE_MODELSCOPE=true vllm serve /app/Qwen/Qwen3-14B --enable-reasoning --reasoning-parser deepseek_r1  --dtype 'half' --tensor_parallel_size 4 --host 0.0.0.0 --port 5001 --gpu_memory_utilization 0.8

防止显存out memory,设置

--gpu_memory_utilization 0.8

部署过程中需要对transformer、deepseek、torch、modelscope进行升级。

在这里插入图片描述

3、 将部署模型服务注册到dify中

目前安装的dify为1.2.0版本

注册模型
在这里插入图片描述

推理模型测试

在这里插入图片描述

非推理模型测试
在这里插入图片描述

4、 难题测试

\1. 一根 20 米长的木棍能通过高 5 米、宽 6 米的城门吗?

一通推理后,回答错误。

在这里插入图片描述

\2. 1 元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有 20 元钱,最多可以喝到几瓶汽水?

这道题中间有个借瓶的操作。当喝到第 39 瓶时,手头就会有一个空瓶子,我们可以先借一个空瓶,换来一瓶汽水喝完后,再把空瓶还给店主,所以正确答案是 40 瓶。

Qwen3 又经过一顿繁琐的思考,也想到了借瓶子,只是到了最后,Qwen3 认为借瓶是非常规假设。

在这里插入图片描述

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
<think>好的,用户想了解如何在Dify平台上部署Qwen模型。我需要结合提供的引用内容,给出清晰的步骤。首先,我得确认用户是否已经安装了必要的工具,比如Ollama和Dify。然后按照引用的步骤一步步来。 根据引用3,用户需要先安装Ollama,用brew命令安装,然后启动服务。接着下载Qwen模型,比如运行ollama run qwen:14b。然后进入Dify的配置界面,添加模型,填写名称和URL。这里要注意URL是否正确,比如http://localhost:11434,引用4提到验证端口是否成功。 可能用户会遇到问题,比如模型下载失败,或者Dify无法连接Ollama,这时候需要检查服务是否运行,端口是否正确。另外,用户可能不清楚如何验证模型是否部署成功,需要指导他们访问API端口测试。 还要考虑不同版本的Qwen模型,比如用户可能想用7B或72B的版本,步骤类似,但模型名称需要对应。同时,提醒用户注意硬件要求,尤其是大模型需要更多显存。 最后,生成相关问题,覆盖安装、配置、优化和应用场景,这样用户可以有后续的参考。</think>### 如何在 Dify 平台上部署 Qwen 模型? #### 部署步骤说明 1. **安装 Ollama 框架** - 使用 Homebrew 安装 Ollama(适用于 macOS): ```bash brew install ollama --cask ``` - 启动 Ollama 服务: ```bash ollama serve ``` - 此步骤需保持终端运行状态以维持服务[^3][^4]。 2. **下载并运行 Qwen 模型** - 在独立终端中执行以下命令(以 Qwen2-14B 模型为例): ```bash ollama run qwen:14b ``` - 支持其他尺寸模型如 `qwen:7b` 或 `qwen:72b`[^1][^3]。 3. **验证模型服务** - 访问 `http://localhost:11434`,若返回 Ollama 的 API 信息,则说明服务正常运行。 4. **配置 Dify 平台** - 登录 Dify 控制台,进入 **模型供应商 > Ollama** 配置页 - 填写参数: - **模型名称**:`qwen:14b`(与下载的模型名称一致) - **基础 URL**:`http://localhost:11434` - 保存后即可在 Dify 工作流中调用该模型[^3][^2]。 #### 常见问题排查 - **模型下载失败**:检查网络连接,或尝试更换镜像源 - **Dify 无法连接 Ollama**:确认 Ollama 服务进程是否存活,端口 `11434` 是否开放 - **显存不足**:较大模型(如 72B)需要至少 48GB 显存,建议根据硬件选择合适尺寸 #### 优化建议 - 使用 **GQA 机制**(Qwen2 内置特性)可降低 30% 显存占用并提升推理速度[^1] -Dify 中结合 RAG 管道增强模型的知识库支持能力
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值