题目大意:
在村庄之间修路,有水平距离和垂直距离,要求水平距离之和与垂直距离之和的比值最小;
思路:
r=sigma(val[i])/sigma(cost[i]);
可得式子:f(l)=[sigma(val[i])-l*sigma(cost[i])]*x[i]=d[i]*x[i];
x[i]为1或0,表示要和不要这条边;
有数学知识可得:
当r最大时d[i]为零;此直线为斜率为负数,截距为整数的直线;
那么我们就可以二分得到结果或者采用迭代法Dinkelbach算法;
参考链接:http://www.cnblogs.com/KirisameMarisa/p/4187637.html;
由于二分法只用到了ans与零的关系,而并没有用到我们求出来的较优值cost/val,我们可以将较优值带入,将会更加逼近结果;二分相对盲目,没有迭代法高效;
二分法:
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn=1009;
#define inf 0x3f3f3f3f
#define eps 1e-6
int n;
double dist[maxn],mp[maxn][maxn],mid;
bool vis[maxn];
struct node
{
double x,y,z;
} p[maxn];
double cal(node a,node b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
void build()
{
for(int i=0; i<n; i++)
for(int j=0; j<n; j++)
if(i==j) mp[i][j]=0;
else mp[i][j]=inf;
for(int i=0; i<n; i++)
for(int j=i+1; j<n; j++)
mp[j][i]=mp[i][j]=-mid*cal(p[i],p[j])+fabs(p[j].z-p[i].z);
}
double prime()
{
memset(vis,false,sizeof vis);
for(int i=0;i<n;i++) dist[i]=inf;
dist[0]=0;
double ans=0;
while(1)
{
int pre=-1;
for(int i=0;i<n;i++)
if(!vis[i]&&(pre==-1||dist[i]<dist[pre])) pre=i;
if(pre==-1) break;
vis[pre]=true;
ans+=dist[pre];
for(int i=0;i<n;i++)
dist[i]=min(dist[i],mp[pre][i]);
}
return ans;
}
void solve()
{
double low=0.0,high=100.0;
while(low+eps<high)
{
mid=(low+high)*0.5;
build();
if(prime()>0) low=mid;
else high=mid;
}
printf("%.3f\n",low);
}
int main()
{
while(scanf("%d",&n)&&n)
{
for(int i=0; i<n; i++)
scanf("%lf%lf%lf",&p[i].x,&p[i].y,&p[i].z);
solve();
}
return 0;
}
迭代法:
#include <cstdio>
#include <cmath>
#include <cstring>
#include <iostream>
#define eps 1e-6
#define inf 1e8
using namespace std;
const int maxn=1009;
double x[maxn],y[maxn],z[maxn],dis[maxn],d[maxn][maxn],c[maxn][maxn],g[maxn][maxn];
int n,pre[maxn];
double cost,val,l;
double cal(int i,int j)
{
return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
}
double prime()
{
memset(pre,0,sizeof pre);//需要记录前驱结点,刚开始所有节点的前驱结点均为第一个节点0
for(int i=0;i<n;i++) dis[i]=inf;
for(int i=0; i<n; i++)
for(int j=i+1; j<n; j++)
g[j][i]=g[i][j]=c[i][j]-l*d[i][j];
cost=val=0;
dis[0]=0;
double ans=0;
while(1)
{
int v=-1;
for(int i=0; i<n; i++)
if(pre[i]!=-1&&(v==-1||dis[i]<dis[v])) v=i;
if(v==-1) break;
cost+=c[pre[v]][v];
val+=d[pre[v]][v];
ans+=dis[v];
pre[v]=-1;
for(int i=0; i<n; i++)
if(pre[i]!=-1&&dis[i]>g[v][i]) dis[i]=g[v][i],pre[i]=v;
}
return ans;
}
int main()
{
while(scanf("%d",&n)&&n)
{
for(int i=0; i<n; i++)
scanf("%lf%lf%lf",&x[i],&y[i],&z[i]);
for(int i=0; i<n; i++)
for(int j=i+1; j<n; j++)
d[j][i]=d[i][j]=cal(i,j),c[j][i]=c[i][j]=fabs(z[i]-z[j]);
l=0.0;
while(fabs(prime())>eps) l=cost/val;
printf("%.3f\n",l);
}
return 0;
}