poj2728:最优比率生成树

题目大意:
在村庄之间修路,有水平距离和垂直距离,要求水平距离之和与垂直距离之和的比值最小;

思路:
r=sigma(val[i])/sigma(cost[i]);
可得式子:f(l)=[sigma(val[i])-l*sigma(cost[i])]*x[i]=d[i]*x[i];
x[i]为1或0,表示要和不要这条边;
有数学知识可得:
当r最大时d[i]为零;此直线为斜率为负数,截距为整数的直线;
那么我们就可以二分得到结果或者采用迭代法Dinkelbach算法;

参考链接:http://www.cnblogs.com/KirisameMarisa/p/4187637.html

由于二分法只用到了ans与零的关系,而并没有用到我们求出来的较优值cost/val,我们可以将较优值带入,将会更加逼近结果;二分相对盲目,没有迭代法高效;

二分法:

#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn=1009;
#define inf 0x3f3f3f3f
#define eps 1e-6
int n;
double dist[maxn],mp[maxn][maxn],mid;
bool vis[maxn];
struct node
{
    double x,y,z;
} p[maxn];
double cal(node a,node b)
{
    return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
void build()
{
    for(int i=0; i<n; i++)
        for(int j=0; j<n; j++)
            if(i==j) mp[i][j]=0;
            else mp[i][j]=inf;
    for(int i=0; i<n; i++)
        for(int j=i+1; j<n; j++)
            mp[j][i]=mp[i][j]=-mid*cal(p[i],p[j])+fabs(p[j].z-p[i].z);
}
double prime()
{
    memset(vis,false,sizeof vis);
    for(int i=0;i<n;i++) dist[i]=inf;
    dist[0]=0;
    double ans=0;
    while(1)
    {
        int pre=-1;
         for(int i=0;i<n;i++)
            if(!vis[i]&&(pre==-1||dist[i]<dist[pre])) pre=i;
         if(pre==-1) break;
         vis[pre]=true;
         ans+=dist[pre];
         for(int i=0;i<n;i++)
            dist[i]=min(dist[i],mp[pre][i]);
    }
    return ans;
}
void solve()
{
    double low=0.0,high=100.0;
    while(low+eps<high)
    {
        mid=(low+high)*0.5;
         build();
        if(prime()>0) low=mid;
        else high=mid;
    }
    printf("%.3f\n",low);
}
int main()
{
    while(scanf("%d",&n)&&n)
    {
        for(int i=0; i<n; i++)
            scanf("%lf%lf%lf",&p[i].x,&p[i].y,&p[i].z);
        solve();
    }
    return 0;
}

迭代法:

#include <cstdio>
#include <cmath>
#include <cstring>
#include <iostream>
#define eps 1e-6
#define inf 1e8
using namespace std;
const int maxn=1009;
double x[maxn],y[maxn],z[maxn],dis[maxn],d[maxn][maxn],c[maxn][maxn],g[maxn][maxn];
int n,pre[maxn];
double cost,val,l;
double cal(int i,int j)
{
    return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
}
double prime()
{
    memset(pre,0,sizeof pre);//需要记录前驱结点,刚开始所有节点的前驱结点均为第一个节点0
    for(int i=0;i<n;i++) dis[i]=inf;
    for(int i=0; i<n; i++)
        for(int j=i+1; j<n; j++)
            g[j][i]=g[i][j]=c[i][j]-l*d[i][j];
    cost=val=0;
    dis[0]=0;
    double ans=0;
    while(1)
    {
        int v=-1;
        for(int i=0; i<n; i++)
            if(pre[i]!=-1&&(v==-1||dis[i]<dis[v])) v=i;
        if(v==-1) break;
        cost+=c[pre[v]][v];
        val+=d[pre[v]][v];
        ans+=dis[v];
        pre[v]=-1;
        for(int i=0; i<n; i++)
            if(pre[i]!=-1&&dis[i]>g[v][i]) dis[i]=g[v][i],pre[i]=v;
    }
    return ans;
}
int main()
{
    while(scanf("%d",&n)&&n)
    {
        for(int i=0; i<n; i++)
            scanf("%lf%lf%lf",&x[i],&y[i],&z[i]);
        for(int i=0; i<n; i++)
            for(int j=i+1; j<n; j++)
                d[j][i]=d[i][j]=cal(i,j),c[j][i]=c[i][j]=fabs(z[i]-z[j]);
        l=0.0;
        while(fabs(prime())>eps) l=cost/val;
        printf("%.3f\n",l);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值