函数调用
通常,当一个函数运行期间调用另一个函数时,在运行被调函数之前,系统需要完成3件事:
(1)将所有的实参,返回地址(个人理解是调用被调函数时的下一个语句的地址)等信息传递给被调函数保存。
(2)为被调函数的局部变量分配存储空间。
(3)将控制转移到被调函数入口。
从被调函数返回调用函数之前,系统完成3件事:
(1)保存被调函数的计算结果。
(2)释放被调函数的数据区。
(3)依照被调函数保存的返回地址,将控制转移到调用函数。
递归:
一个函数自己直接或间接调用自己。
思想就是:将问题规模不断缩小,化繁为简,求n!转化成(n-1)!,再转换成(n-2)!.......最后转换成(1)!.
有如汉诺塔问题,如果初始有10个砝码,要从A移动到C,这个看起来比较复杂。只要把前9个移动到B,然后移动第10个到C。那这9个怎么移动呢,也用这种方式。。。这就是递归实现汉诺塔详细代码见最下方
循环和递归比较:
递归:
易于理解
速度慢
存储空间大
循环
不易于理解
速度快
存储空间小
递归应用:
1.求阶乘
2.1+2+3+4+。。。+100的和
3.汉诺塔
4.走迷宫(CS的实现)
递归的运用:
树和森林就是以递归的方式定义的
树和图的很多算法都是以递归来实现的
很多数学公式就是以递归的方式定义的
斐波拉契序列
12 3 5 8 13 21 34。。。
#include<stdio.h>
void hanota(int num,char A,char B,char C)
{
//如果只有一个元素,那么直接把这个元素,移动到C
if(1==num)
{
printf("把第%d个元素从%c移动到%c\n",num,A,C);
}else{
//如果不是第一个元素,先把前n-1个元素,借助C移动到B
hanota(num-1,A,C,B);
//然后把A最下面的元素移动到C
printf("把第%d个元素从%c移动到%c\n",num,A,C);
//然后再把B上的元素借助A移动到C
hanota(num-1,B,A,C);
}
}
int main()
{
char A='A';
char B='B';
char C='C';
hanota(3,A,B,C);
return 0;
}
现实生活中,如果我们解决的问题比较繁琐,不妨把问题规模减小考虑。