案例1:分析消费者满意度数据,进行因子分析和聚类分析
通过一个具体的案例来演示如何在SPSS中进行市场调研数据分析,特别是针对消费者满意度数据的因子分析和聚类分析。假设有一份关于消费者对某品牌产品满意度的调查问卷数据,包括以下变量:
q1
:产品质量满意度(1-5分,1=非常不满意,5=非常满意)q2
:产品价格满意度(1-5分,1=非常不满意,5=非常满意)q3
:客户服务满意度(1-5分,1=非常不满意,5=非常满意)q4
:购买便利性满意度(1-5分,1=非常不满意,5=非常满意)q5
:品牌形象满意度(1-5分,1=非常不满意,5=非常满意)q6
:售后服务满意度(1-5分,1=非常不满意,5=非常满意)
目标是进行因子分析以减少变量数量,并进行聚类分析以识别不同的消费者群体。
1. 数据导入
假设已经有一个名为 consumer_satisfaction.sav
的SPSS数据文件。
* 打开数据文件。
GET FILE='C:\path\to\your\file\consumer_satisfaction.sav'.
2. 数据清理
检查数据中的缺失值并处理。
* 检查数据中的缺失值。
FREQUENCIES VARIABLES=q1 q2 q3 q4 q5 q6
/FORMAT=NOTABLE
/STATISTICS=MEAN MEDIAN MODE STDDEV MIN MAX
/MISSING=REPORT.
* 删除含有缺失值的观测。
SELECT IF (SYSMIS(q1) OR SYSMIS(q2) OR SYSMIS(q3) OR SYSMIS(q4) OR SYSMIS(q5) OR SYSMIS(q6)) = 0.
EXECUTE.
3. 描述性统计
计算各个变量的描述性统计。
* 计算描述性统计。
DESCRIPTIVES VARIABLES=q1 q2 q3 q4 q5 q6
/STATISTICS=MEAN STDDEV MIN MAX.
4. 因子分析
进行因子分析以减少变量数量,并提取潜在的因子。
* 因子分析。
FACTOR
/VARIABLES q1 q2 q3 q4 q5 q6
/MISSING LISTWISE
/ANALYSIS q1 q2 q3 q4 q5 q6
/PRINT INITIAL EXTRACTION ROTATION
/FORMAT SORT BLANK(.10)
/PLOT EIGEN
/CRITERIA MINEIGEN(1) ITERATE(25)
/EXTRACTION PC
/ROTATION VARIMAX
/SAVE REG(ALL)
/METHOD=CORRELATION.
5. 聚类分析
进行聚类分析以识别不同的消费者群体。
5.1 层次聚类分析
* 层次聚类分析。
CLUSTER q1 q2 q3 q4 q5 q6
/METHOD WARD
/MEASURE=SEUCLID
/ID=caseid
/PRINT SCHEDULE CLUSTER(5)
/PLOT DENDROGRAM.
5.2 K-均值聚类分析
假设根据层次聚类的结果决定分为3个集群。
* K-均值聚类分析。
K-MEANS CLUSTER
/VARIABLES q1 q2 q3 q4 q5 q6
/METHOD=ITERATE