怎么样安排,挖出的黄金最多呢?
这里有两个维度的东西,
一个是收益,分别是200kg, 300kg, 350kg, 400kg, 500kg
一个是成本,分别是3人,4人,3人,5人,5人
可能乍一看,我们会采用贪心算法
首先,计算他们的性价比,200/3,300/4,350/3,400/5,500/5。
然后优先选择性价比较大的。
会导致局部最优解,而非全局最优解。
我们拿出某个黄金来说,只有两个选择,那就是挖或者不挖。
1. 如果不挖,简化为在剩余4个金山中进行选择。
2. 如果挖,简化为除当前黄金以外,从剩下的4个黄金中进行选择,
解法一:递归
// w为人力,n可选项,p为代价,g为收益
public int getBestGoldMining(int w, int n, int[] p, int[] g){
if(w==0 || n==0){
return 0;
}
// 当前人力不足
if(w < p[n-1]){
// 跳过当前
return getBestGoldMining(w, n-1, p, g);
}
// 不选择当前和选择当前两个方案中选择收益最大的那个
return Math.max(getBestGoldMining(w, n-1, p, g), getBestGoldMining(w-p[n-1], n-1, p, g)+g[n-1]);
}
解法二:迭代计算
1. 创建数据表,竖向为备选项及其成本/收益,横向为手中的成本能力,空白部分为最大收益。
2. 依次填充空白的部分。
因为400kg的黄金的代价为5个人力,所以第一行空白的1-4个工人的位置,最大收益为0.
此时的w为1,2,3,4,但是p[0] = 5, w < p[0], 推进公式为:
F(n,w) = F(n-1,w) (n>1, w<p[n-1])
则,
F(1,1) = F(1-1,1) = F(0,1) = 0
F(1,2) = F(1-1,2) = F(0,2) = 0
F(1,3) = F(1-1,3) = F(0,3) = 0
F(1,4) = F(1-1,4) = F(0,4) = 0
w为5,6,7,8,9,10时, w >= p[0], 推进公式为:
F(n,w) = max(F(n-1,w), F(n-1,w-p[n-1])+g[n-1]) (n>1, w≥p[n-1]);
则,
F(1, 5) = max(F(0, 5), F(0, 0) + 400) = 400
F(1, 6) = max(F(0, 6), F(0, 1) + 400) = 400
F(1, 7) = max(F(0, 7), F(0, 2) + 400) = 400
F(1, 8) = max(F(0, 8), F(0, 3) + 400) = 400
F(1, 9) = max(F(0, 9), F(0, 4) + 400) = 400
F(1, 10) = max(F(0, 10), F(0, 5) + 400) = 400
对于第二行,
因为500kg的黄金的代价为5个人力,所以第二行空白的1-4个工人的位置,最大收益为0.
此时的w为1,2,3,4,但是p[1] = 5, w < p[0], 推进公式为:
F(n,w) = F(n-1,w) (n>1, w<p[n-1])
则,
F(2,1) = F(2-1,1) = F(1,1) = 0
F(2,2) = F(2-1,2) = F(1,2) = 0
F(2,3) = F(2-1,3) = F(1,3) = 0
F(2,4) = F(2-1,4) = F(1,4) = 0
w为5,6,7,8,9,10时, w >= p[1], 推进公式为:
F(n,w) = max(F(n-1,w), F(n-1,w-p[n-1])+g[n-1]) (n>1, w≥p[n-1]);
则,
F(2, 5) = max(F(1, 5), F(1, 0) + 500) = 500
F(2, 6) = max(F(1, 6), F(1, 1) + 500) = 500
F(2, 7) = max(F(1, 7), F(1, 2) + 500) = 500
F(2, 8) = max(F(1, 8), F(1, 3) + 500) = 500
F(2, 9) = max(F(1, 9), F(1, 4) + 500) = 500
F(2, 10) = max(F(1, 10), F(1, 5) + 500) = 900
对于第三行,
因为200kg的黄金的代价为3个人力,所以第三行空白的1-2个工人的位置,最大收益为0.
此时的w为1,2,但是p[1] = 3, w < p[0], 推进公式为:
F(n,w) = F(n-1,w) (n>1, w<p[n-1])
则,
F(3,1) = F(3-1,1) = F(2,1) = 0
F(3,2) = F(3-1,2) = F(2,2) = 0
当w为3,4,5,6,7,8,9,10时,w >= p[2] 推进公式为:
F(n,w) = max(F(n-1,w), F(n-1,w-p[n-1])+g[n-1]) (n>1, w≥p[n-1]);
则,
F(3, 3) = max(F(2, 3), F(2, 0) + 200) = 200
F(3, 4) = max(F(2, 4), F(2, 1) + 200) = 200
F(3, 5) = max(F(2, 5), F(2, 2) + 200) = 500
F(3, 6) = max(F(2, 6), F(2, 3) + 200) = 500
F(3, 7) = max(F(2, 7), F(2, 4) + 200) = 500
F(3, 8) = max(F(2, 8), F(2, 5) + 200) = 700
F(3, 9) = max(F(2, 9), F(2, 6) + 200) = 700
F(3, 10) = max(F(2, 10), F(2, 7) + 200) = 900
以此类推
第五行
所以最佳答案是900.
public int getBestGoldMiningV2(int w, int[] p, int[] g){
//创建表格
int[][] resultTable = new int[g.length+1][w+1];
//填充表格
for(int i = 1; i <= g.length; i++){
for(int j = 1; j <= w; j++){
if(j<p[i-1]){
// 当前剩余成本不足以选择当前的方案
resultTable[i][j] = resultTable[i-1][j];
}else{
// 当前成本足够,两个方案的收益取最大值
resultTable[i][j] = Math.max(resultTable[i-1][j], resultTable[i-1][j-p[i-1]]+ g[i-1]);
}
}
}
//返回最后1个格子的值
return resultTable[g.length][w];
}
其实我们并不关心j < p[i-1]的部分
public int getBestGoldMiningV3(int w, int[] p, int[] g){
int[] results = new int[w+1];
//填充一维数组
for(int i = 1; i <= g.length; i++){
for(int j = w; j >= 1; j--){
if(j >= p[i-1]){
results[j] = Math.max(results[j], results[j - p[i-1]]+ g[i-1]);
}
}
}
//返回最后1个格子的值
return results[w];
}