百度之星初赛第三场B题-最短路2(魔改dijstra)
题目:
小 A 是社团里的工具人,有一天他的朋友给了他一个 n n n 个点, m m m 条边的正权连通无向图,要他计算所有点两两之间的最短路。
作为一个工具人,小 A 熟练掌握着 floyd 算法,设 w [ i ] [ j ] w[i][j] w[i][j]*为原图中$ (i,j)$ 之间的权值最小的边的权值,若没有边则 w [ i ] [ j ] = w[i][j]= w[i][j]=无穷大。特别地,若 i = j i=j i=j,则 w [ i ] [ j ] = 0 w[i][j]=0 w[i][j]=0
Floyd 的 C++ 实现如下:
for(int k=1;k<=p;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
w[i][j]=min(w[i][j],w[i][k]+w[k][j]);
当$ p=n$时,该代码就是我们所熟知的 f l o y d floyd floyd,然而小 A 为了让代码跑的更快点,所以想减少 p p p 的值。
令 D i , j D_{i,j} Di,j为最小的非负整数 x x x,满足当$ p=x$时,点 i i i与点 j j j之间的最短路被正确计算了。
现在你需要求 ∑ i = 1 n ∑ j = 1 n D i , j \sum_{i=1}^{n}\sum_{j=1}^{n}D_{i,j} ∑i=1n∑j=1n