2019百度之星初赛第三场B题-最短路2(魔改dijstra)

博客介绍了百度之星初赛第三场B题的最短路问题,需要求解所有点对之间的最短路径中最大顶点编号的贡献。通过分析Floyd算法,提出使用n次Dijkstra算法优化,每次计算一个点到其他点的最短路,并处理多条最短路径情况。博主分享了错误与教训,如需考虑数据类型溢出和多条最短路径的情况,以及最终的数据样例和答案22。
摘要由CSDN通过智能技术生成

百度之星初赛第三场B题-最短路2(魔改dijstra)

题目:

小 A 是社团里的工具人,有一天他的朋友给了他一个 n n n 个点, m m m 条边的正权连通无向图,要他计算所有点两两之间的最短路。

作为一个工具人,小 A 熟练掌握着 floyd 算法,设 w [ i ] [ j ] ​ w[i][j]​ w[i][j]*为原图中$ (i,j)​$ 之间的权值最小的边的权值,若没有边则 w [ i ] [ j ] = ​ w[i][j]=​ w[i][j]=无穷大。特别地,若 i = j ​ i=j​ i=j,则 w [ i ] [ j ] = 0 ​ w[i][j]=0​ w[i][j]=0

Floyd 的 C++ 实现如下:

for(int k=1;k<=p;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
    w[i][j]=min(w[i][j],w[i][k]+w[k][j]);

当$ p=n$时,该代码就是我们所熟知的 f l o y d floyd floyd,然而小 A 为了让代码跑的更快点,所以想减少 p p p 的值。

D i , j D_{i,j} Di,j为最小的非负整数 x x x,满足当$ p=x$时,点 i i i与点 j j j之间的最短路被正确计算了。

现在你需要求 ∑ i = 1 n ∑ j = 1 n D i , j \sum_{i=1}^{n}\sum_{j=1}^{n}D_{i,j} i=1nj=1n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值