C++ | Leetcode C++题解之第329题矩阵中的最长递增路径

题目:

题解:

class Solution {
public:
    static constexpr int dirs[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
    int rows, columns;

    int longestIncreasingPath(vector< vector<int> > &matrix) {
        if (matrix.size() == 0 || matrix[0].size() == 0) {
            return 0;
        }
        rows = matrix.size();
        columns = matrix[0].size();
        auto outdegrees = vector< vector<int> > (rows, vector <int> (columns));
        for (int i = 0; i < rows; ++i) {
            for (int j = 0; j < columns; ++j) {
                for (int k = 0; k < 4; ++k) {
                    int newRow = i + dirs[k][0], newColumn = j + dirs[k][1];
                    if (newRow >= 0 && newRow < rows && newColumn >= 0 && newColumn < columns && matrix[newRow][newColumn] > matrix[i][j]) {
                        ++outdegrees[i][j];
                    }
                }
            }
        }
        queue < pair<int, int> > q;
        for (int i = 0; i < rows; ++i) {
            for (int j = 0; j < columns; ++j) {
                if (outdegrees[i][j] == 0) {
                    q.push({i, j});
                }
            }
        }
        int ans = 0;
        while (!q.empty()) {
            ++ans;
            int size = q.size();
            for (int i = 0; i < size; ++i) {
                auto cell = q.front(); q.pop();
                int row = cell.first, column = cell.second;
                for (int k = 0; k < 4; ++k) {
                    int newRow = row + dirs[k][0], newColumn = column + dirs[k][1];
                    if (newRow >= 0 && newRow < rows && newColumn >= 0 && newColumn < columns && matrix[newRow][newColumn] < matrix[row][column]) {
                        --outdegrees[newRow][newColumn];
                        if (outdegrees[newRow][newColumn] == 0) {
                            q.push({newRow, newColumn});
                        }
                    }
                }
            }
        }
        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值