MindSpore框架的使用

上一篇,我们学习了TensorFlow的基本使用方法,这一次我们尝试使用昇思框架。

下载:进入官网下载地址,选择适合自己的版本,根据命令安装即可。建议在anaconda中使用pip安装。
  • 常用依赖库
#导入相关依赖库
import  os
from matplotlib import pyplot as plt
import numpy as np

import mindspore as ms
import mindspore.context as context
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV
from mindspore.nn.metrics import Accuracy

from mindspore import nn
from mindspore.train import Model
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
数据集相关API库:mindspore.dataset
构建神经网络层相关API库:mindspore.nn
训练模型相关API库: mindspore.train
  • 设置设备为CPU
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
mode: 设置为context.PYNATIVE_MODE是动态图模式,context.GRAPH_MODE是静态图模式。
  • 设置数据集和训练集路径,并使用MnistDataset()函数读取
DATA_DIR_TRAIN = "./datasets/MNIST_Data/train" # 训练集路径
DATA_DIR_TEST = "./datasets/MNIST_Data/test" # 测试集路径
#读取数据
ds_train = ds.MnistDataset(DATA_DIR_TRAIN)
ds_test = ds.MnistDataset(DATA_DIR_TEST) 
#显示数据集的相关特性
print('训练数据集数量:',ds_train.get_dataset_size())
print('测试数据集数量:',ds_test.get_dataset_size())
image=ds_train.create_dict_iterator().__next__()
# 使用函数获得图像数据
print('图像长/宽/通道数:',image['image'].shape)
print('一张图像的标签样式:',image['label'])    #一共10类,用0-9的数字表达类别。
  • 定义函数,对数据集进行处理
def create_dataset(training=True, batch_size=128, resize=(28, 28),
                   rescale=1/255, shift=0, buffer_size=64):
	ds = ms.dataset.MnistDataset(DATA_DIR_TRAIN if training else DATA_DIR_TEST)
	# 定义Map操作尺寸缩放,归一化和通道变换
	resize_op = CV.Resize(resize)
	rescale_op = CV.Rescale(rescale,shift)
	hwc2chw_op = CV.HWC2CHW()
	# 对数据集进行map操作, 即映射操作.
	ds = ds.map(input_columns="image", operations=[rescale_op,resize_op, hwc2chw_op])
	ds = ds.map(input_columns="label", operations=C.TypeCast(ms.int32))
	#设定打乱操作参数和batchsize大小
	ds = ds.shuffle(buffer_size=buffer_size)
	ds = ds.batch(batch_size, drop_remainder=True)
	return ds
  • 查看数据集中的图片和标签
#显示前10张图片以及对应标签,检查图片是否是正确的数据集
ds = create_dataset(training=False)
data = ds.create_dict_iterator().__next__()
images = data['image'].asnumpy()
labels = data['label'].asnumpy()
plt.figure(figsize=(15,5))
for i in range(1,11):
	plt.subplot(2, 5, i) # 10张图片,使用2x5的网格
	plt.imshow(np.squeeze(images[i]))
	plt.title('Number: %s' % labels[i])
	plt.xticks([])
plt.show()
  • 接下来创建模型,模型定义方法使用类的定义,调用nn中的函数进行网络层构建。类中需要定义__init__construct方法。这里先展示从mindspore官网找到的定义方法:
#创建模型。模型包括3个全连接层,最后输出层使用softmax进行多分类,共分成(0-9)10类
class ForwardNN(nn.Cell):      
	def __init__(self):
		super(ForwardNN, self).__init__()
		self.flatten = nn.Flatten()
		self.fc1 = nn.Dense(784, 512, activation='relu')  
		# 参数:输入维度、输出维度、激活函数
		self.fc2 = nn.Dense(512, 128, activation='relu')
		self.fc3 = nn.Dense(128, 10, activation=None)


	def construct(self, input_x):
		output = self.flatten(input_x)
		output = self.fc1(output)
		output = self.fc2(output) 
		output = self.fc3(output)
		return output
  • 设置模型训练相关超参数
#创建网络,损失函数,评估指标  优化器,设定相关超参数
lr = 0.001
num_epoch = 10
momentum = 0.9

net = ForwardNN()
# 使用的神经网络
loss = nn.loss.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
# 损失函数
metrics={"Accuracy": Accuracy()}
# metrics: 准确率计算方式
opt = nn.Adam(net.trainable_params(), lr) 
# 优化器
  • 开始训练
# 编译模型
model = Model(net, loss, opt, metrics)
# 是否保存训练过程中的模型
config_ck = CheckpointConfig(save_checkpoint_steps=1875, keep_checkpoint_max=10)
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_net",directory = "./ckpt" ,config=config_ck)
#生成数据集
ds_eval = create_dataset(False, batch_size=32)
ds_train = create_dataset(batch_size=32)
#训练模型
loss_cb = LossMonitor(per_print_times=1875)
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
# 回调函数,训练场景下,监控训练的loss;边训练边推理场景下,监控训练的loss和推理的metrics。如果loss是NAN或INF,则终止训练。
print("============== Starting Training ==============")
model.train(num_epoch, ds_train,callbacks=[ckpoint_cb,loss_cb,time_cb ],dataset_sink_mode=False)
  • 预测测试集并对结果进行评价
#使用测试集评估模型,打印总体准确率
metrics=model.eval(ds_eval)
print(metrics)
在使用上,MindSpore和TensorFlow以及Pytorch均无太大区别,主要在于不同库函数的区别上。因此,建议学会使用一种框架,后面在需要用到其他框架的时候可以很快上手。在此之后,我们会练习使用TensorFlow或者MindSpore进行经典网络的搭建,请重点放在经典网络的结构特点上而不是框架本身的语法上。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值