xynuoj 2908 魔法学士

2908: 魔法学士

时间限制: 1 Sec   内存限制: 128 MB
提交: 30   解决: 7

题目描述

    魔法学院毕业考试总共有四门课,分值分别为100、100、150、150,其分数线分为单科线和总分线,其中四门课的单科线分别是a、b、c、d,总分线是L。也就是说,只有当每门课的分数都不低于该门课的单科线、并且总分不低于总分线时,才能够被授予魔法学士的称号。

    现在给出N个学生的学号以及四门课的分数,计算能够被授予魔法学士的人数,并把能够被授予魔法学士的学生按总分从大到小的顺序输出他们的学号和总分,总分相同的则按学号从小到大的顺序进行输出。

输入

只有一组数据。
第一行5个整数,分别是四门课的单科线a、b、c、d和总分线L(0<=a<=100、0<=b<=100、0<=c<=150、0<=d<=150、0<=L<=500)。
第二行一个整数N(0<=N<=300),代表学生人数。
接下来N行,每行由一个学号以及4个整数组成,其中学号的长度为13,且每一位都是0~9之间的数字,而4个整数分别代表该学生的四门课的分数。数据保证学号唯一,且每门课的分数都不小于0分、不大于该门课的满分分值。

输出

输出的第一行是能够被授予魔法学士的人数K。接下来K行,按照被授予魔法学士的学生的总分从大到小的顺序输出他们的学号和总分,总分相同的则按学号从小到大的顺序进行输出。

样例输入

55 55 85 85 330
6
1108060026000 72 75 118 110
1108060026001 78 53 91 115
1108060026002 80 74 130 112
1108060026003 69 70 127 89
1108060026004 76 75 118 82
1108060026005 75 85 84 100

样例输出

3
1108060026002 396
1108060026000 375
1108060026003 355

提示

来源

虽然long long可以存13位的数据,但是这道题不能这么用,因为可能出现学号为000001的情况,那样用longlong的话将会只输出1,所以还是得用字符串

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
struct Node{
	char str[15];
	int a,b,c,d,sum;
}a[500];
int cmp(Node x,Node y){
	if(x.sum!=y.sum)
	return x.sum>y.sum;
	else
	return strcmp(x.str,y.str)<0;
}
int main(){
	int A,B,C,D,L,N;
	scanf("%d %d %d %d %d",&A,&B,&C,&D,&L);
	scanf("%d",&N);
	for(int i=0;i<N;i++){
		scanf("%s",a[i].str);
		scanf("%d %d %d %d",&a[i].a,&a[i].b,&a[i].c,&a[i].d);
		a[i].sum=a[i].a+a[i].b+a[i].c+a[i].d;
	}
	sort(a,a+N,cmp);
	int k=0;
	for(int i=0;i<N;i++){
		if(a[i].a>=A&&a[i].b>=B&&a[i].c>=C&&a[i].d>=D&&a[i].sum>=L){
			k++;
			//printf("%s %d\n",a[i].str,a[i].sum);
		}
	}
	printf("%d\n",k);
	for(int i=0;i<N;i++){
		if(a[i].a>=A&&a[i].b>=B&&a[i].c>=C&&a[i].d>=D&&a[i].sum>=L){
			printf("%s %d\n",a[i].str,a[i].sum);
		}
	}
	return 0;
} 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值