xynuoj 1805 矩形嵌套

1805: 矩形嵌套

时间限制: 1 Sec  内存限制: 64 MB
[提交][状态][讨论版]

题目描述

有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内。

输入

第一行是一个正数N(0<N<10),表示测试数据组数,
每组测试数据的第一行是一个正正数n,表示该组测试数据中含有矩形的个数(n<=1000)
随后的n行,每行有两个数a,b(0<a,b<100),表示矩形的长和宽

输出

每组测试数据都输出一个数,表示最多符合条件的矩形数目,每组输出占一行

样例输入

1
10
1 2
2 4
5 8
6 10
7 9
3 1
5 8
12 10
9 7
2 2

样例输出

5

来源

nyoj动态规划 

排序+最长递增子序列问题

因为题目中只是让选出尽可能多的矩阵,所以用贪心的思想的话,自然会想到先给序列排下序,然后分析一下会发现其实是在一个序列中找出最长的子序列(最长递增子序列问题),而求最长递增子序列是用动态规划的思想来做,循环该点之前的所有点,找出来比该点小的然后判断是否加1之后比该点的dp大



#include<stdio.h>
#include<algorithm>
using namespace std;
struct Node{
	int m,n;
}a[1010]; 
int cmp(Node x,Node y){
	if(x.m==y.m)
	return x.n<y.n; 
	else
	return x.m<y.m;
}
int main(){
	int T,N;
	scanf("%d",&T);
	int dp[1010];//表示以第i个矩阵结尾的最多的矩阵个数 
	while(T--){
		scanf("%d",&N);
		for(int i=0;i<N;i++){
			scanf("%d %d",&a[i].m,&a[i].n);
			if(a[i].m>a[i].n)
			swap(a[i].m,a[i].n);
		}
		sort(a,a+N,cmp);
		for(int i=0;i<N;i++){
			dp[i]=1;
		} 
		for(int i=1;i<N;i++){
			for(int j=0;j<i;j++){
				if(a[j].m<a[i].m&&a[j].n<a[i].n&&dp[j]+1>dp[i]){
					dp[i]+=1;
				}
			}
		}
		int ans=0;
		for(int i=0;i<N;i++){
			if(dp[i]>ans)
			ans=dp[i];
		}
		printf("%d\n",ans);
	}
	return 0;
}
阅读更多
文章标签: 最长递增子序列
个人分类: ACM之动态规划
上一篇xynuoj 1804 括号匹配(二)
下一篇xynuoj 1827 子串和
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭