欢迎来到本篇博客!今天,我们将一起探索著名的泰坦尼克号数据集。这个数据集包含了泰坦尼克号上乘客的信息,以及他们是否在船沉没时幸存下来。我们将从头开始进行数据分析,包括数据的加载、探索、可视化,以及构建机器学习模型来预测乘客的生存情况。
引言
泰坦尼克号是一艘著名的英国客轮,于1912年首航时遭遇海难,沉没在大西洋。这次灾难造成了大量乘客和船员的生命丧失。泰坦尼克号数据集是一个理想的机器学习入门案例,因为它包含了各种有关乘客的信息,例如他们的性别、年龄、仓位等级等,还有一个二进制标签表示他们是否幸存。
步骤1:导入必要的库
首先,我们需要导入一些Python库,以便进行数据分析和机器学习建模。以下是我们将使用的库:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
步骤2:加载和探索数据
接下来,让我们加载泰坦尼克号数据集并进行一些初步的数据探索。我们将使用pandas
库来加载数据,并查看前几行。
# 加载数据集
url = "https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/stuff/titanic.csv"
data = pd.read_csv(url)
# 显示数据的前几行
data.head()
这将显示数据的前五行,让我们对数据有一个大致的了解。
数据包含了各种信息,如乘客的姓名、性别、年龄、仓位等级、票价、登船港口以及是否幸存。接下来,我们可以使用info()
函数来查看数据的详细信息,包括特征的数据类型和缺失值情况。
# 查看数据的详细信息
data.info()
这将显示每个特征的数据类型以及非空值的数量。通过这些信息,我们可以判断哪些特征需要进行数据清洗和预处理。
步骤3:数据预处理
在进行数据分析和建模之前,我们需要对数据进行一些预处理。首先,我们可以删除一些不需要的特征,如乘客的姓名和船票号码。
# 删除不需要的特征
data