泰坦尼克号数据集分析:从入门到进阶

欢迎来到本篇博客!今天,我们将一起探索著名的泰坦尼克号数据集。这个数据集包含了泰坦尼克号上乘客的信息,以及他们是否在船沉没时幸存下来。我们将从头开始进行数据分析,包括数据的加载、探索、可视化,以及构建机器学习模型来预测乘客的生存情况。

引言

泰坦尼克号是一艘著名的英国客轮,于1912年首航时遭遇海难,沉没在大西洋。这次灾难造成了大量乘客和船员的生命丧失。泰坦尼克号数据集是一个理想的机器学习入门案例,因为它包含了各种有关乘客的信息,例如他们的性别、年龄、仓位等级等,还有一个二进制标签表示他们是否幸存。

步骤1:导入必要的库

首先,我们需要导入一些Python库,以便进行数据分析和机器学习建模。以下是我们将使用的库:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report

步骤2:加载和探索数据

接下来,让我们加载泰坦尼克号数据集并进行一些初步的数据探索。我们将使用pandas库来加载数据,并查看前几行。

# 加载数据集
url = "https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/stuff/titanic.csv"
data = pd.read_csv(url)

# 显示数据的前几行
data.head()

这将显示数据的前五行,让我们对数据有一个大致的了解。

数据包含了各种信息,如乘客的姓名、性别、年龄、仓位等级、票价、登船港口以及是否幸存。接下来,我们可以使用info()函数来查看数据的详细信息,包括特征的数据类型和缺失值情况。

# 查看数据的详细信息
data.info()

这将显示每个特征的数据类型以及非空值的数量。通过这些信息,我们可以判断哪些特征需要进行数据清洗和预处理。

步骤3:数据预处理

在进行数据分析和建模之前,我们需要对数据进行一些预处理。首先,我们可以删除一些不需要的特征,如乘客的姓名和船票号码。

# 删除不需要的特征
data 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值