Hadoop运行时一直卡在Running job解决:

本文探讨了Hadoop运行时卡在Runningjob的问题,并提供了两种解决方案。一是调整mapred-site.xml配置,二是优化yarn-site.xml内存配置。通过实验发现,正确配置资源分配能有效解决运行效率问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hadoop运行时一直卡在Running job解决:

在mapred-site.xml下将

<property>
       <name>mapreduce.framework.name</name>
       <value>yarn</value>
</property>

改成

<property>
      <name>mapreduce.job.tracker</name>
      <value>hdfs://192.168.1.120:8001</value>
      <final>true</final>
</property>

ip是master地址。

这个方案能够解决问题,这说明问题就出在yarn的配置上面,但是这样的话map服务并没有在yarn上面跑,然后又看到一篇文章说是要设置yarn里面关于内存和虚拟内存的配置项,在yarn-site.xml添加如下配置:

<property>
    <name>yarn.nodemanager.resource.memory-mb</name>
    <value>20480</value>
</property>
<property>
   <name>yarn.scheduler.minimum-allocation-mb</name>
   <value>2048</value>
</property>
<property>
    <name>yarn.nodemanager.vmem-pmem-ratio</name>
    <value>2.1</value>
</property>

根据作者的分析是因为分配的内存和CPU资源太少,不能满足Hadoop和Hive运行所需的默认资源需求。但是我尝试了这个方案发现并不能解决我的问题。但是第二天发生了特别玄幻的事,我把mapred-site.xml下的又改回去

<property>
       <name>mapreduce.framework.name</name>
       <value>yarn</value>
</property>

想着实验一下yarn的一些配置。。。但是这一次却行了???试了几次都可以在yarn上运行。。。

Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而mapreduce等运算程序则相当于运行于操作系统之上的应用程序,yarn上可以运行各种类型的分布式运算程序(mapreduce只是其中的一种),比如mapreduce、storm程序,spark程序,Yarn就成为一个通用的资源调度平台。
在这里插入图片描述

参考链接:
未运行在yarn上

修改yarn配置

运行Hadoop集群中的jar包住的问题可能有几个原因。首先,可能是由于每个虚拟机分配的内存和CPU资源太少,无法满足Hadoop运行所需的默认资源需求。这可能导致jar包在运行住。\[1\] 另一个可能的原因是提交到集群。这可能是由于配置文件中的某些参数设置正确导致的。例如,mapred-site.xml中的mapreduce.framework.name参数应该设置为yarn,以便正确提交到集群。\[2\] 此外,在INFO mapreduce.Job: Running job位置可能是由于yarn-site.xml中的一些参数设置正确。例如,yarn.nodemanager.resource.memory-mb参数应该设置为足够的内存大小,yarn.scheduler.minimum-allocation-mb参数应该设置为适当的最小分配内存大小,yarn.nodemanager.vmem-pmem-ratio参数应该设置为适当的虚拟内存和物理内存比例。\[3\] 综上所述,要解决hadoop运行jar包住的问题,您可以尝试增加虚拟机的资源分配,确保配置文件中的参数设置正确,并根据需要调整yarn-site.xml中的参数。 #### 引用[.reference_title] - *1* *3* [解决Hadoop运行jar包一直: INFO mapreduce.Job: Running job位置的问题](https://blog.csdn.net/weixin_44177758/article/details/89893518)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [hadoop提交jar包会往下执行的解决方案](https://blog.csdn.net/weixin_33836223/article/details/90066006)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值