1.ds-希尔排序的间隔
题目描述
假设输入的序列为希尔排序的中间结果,请输出当前序列的最小间隔。
Input Format
输入N 0<N<=20。
随后输入N个整数
Output Format
序列排序的最小间隔
样例输入输出
样例1
输入:
3
1 2 3
输出:
1
样例2
输入:
15
18 13 5 9 10 9 19 24 17 20 17 9 20 24 21
输出:
6
#include<iostream>
using namespace std;
int main() {
int n;
cin >> n;
int* a = new int[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int flag = 0;
for (int m = 1; m <= n; m++) {
for (int i = 0; i < n-m; i++) {
if (a[i] >a[i+m])
flag = 1;
}
if (flag == 0){ cout << m;
break;}
flag = 0;
}
return 0;
}
2.ds-快速排序算法
题目描述
使用快速排序算法将n个整数由小到大进行排序。并输出快排的第一趟排序结果以及最终的有序序列。
快速排序选取完pivot之后的进行整理的实现方法有很多,其中一种为”(前后指针法)“根据下面的描述进行实现并按要求输出,
以排序序列的最后一个值作为标准值pivot。
交换法:
选取最后一个关键字( pivot )作为枢轴。
设置两个变量left = 0;right = N - 2;
从left一直向后走,直到找到一个大于等于 pivot 的值,right从后至前,直至找到一个小于 pivot 的值,然后交换这两个数。
重复第三步,一直往后找,直到left和right相遇,然后将 pivot 放置合适位置即可
输入:
n表示输入序列的长度,后边为n个要排序的整数序列,以空格分隔;
输出:
第一趟排序结果,以空格分隔,行尾无空格;
最终的有序序列结果,以空格分隔,行尾无空格;
样例输入输出
样例1输入:
10 4 1 7 6 9 2 8 0 3 5
输出:
4 1 3 0 2 5 8 6 7 9
0 1 2 3 4 5 6 7 8 9样例2
输入:
10 9 1 3 8 23 5 7 10 29 19
输出:
9 1 3 8 10 5 7 19 29 23
1 3 5 7 8 9 10 19 23 29
#include<iostream>
#include<algorithm>
using namespace std;
int main() {
int n, x;
cin >> n;
int* a = new int[n];
int* b = new int[n];
for (int i = 0; i < n; i++) {
cin >> x;
a[i] = x;
b[i] = x;
}
int left = 0, right = n - 2, pivot = a[n - 1];
while (left < right) {
while (a[left] < pivot)
left++;
while (a[right] > pivot)
right--;
if (left < right) {
int tmp = a[left];
a[left] = a[right];
a[right] = tmp;
}
}
for (int i = 0; i < n; i++) {
if (a[i] > pivot) {
int tmp = a[i];
a[i] = pivot;
a[n - 1] = tmp;
break;
}
}
for (int i = 0; i < n - 1; i++) {
cout << a[i] << " ";
}
cout << a[n - 1] << endl;
sort(b,b+n);
for (int i = 0; i < n - 1; i++) {
cout << b[i] << " ";
}
cout << b[n - 1] << endl;
return 0;
}
3.ds-判断排序方法
题目描述
插入排序是迭代算法,逐一获得输入数据,逐步产生有序的输出序列。每步迭代中,算法从输入序列中取出一元素,将之插入有序序列中正确的位置。如此迭代直到全部元素有序。
归并排序进行如下迭代操作:首先将原始序列看成N个只包含1个元素的有序子序列,然后每次迭代归并两个相邻的有序子序列,直到最后只剩下1个有序的序列。
现给定原始序列和由某排序算法产生的中间序列,请你判断该算法究竟是哪种排序算法?
输入格式:
输入在第一行给出正整数N (<=100);随后一行给出原始序列的N个整数;最后一行给出由某排序算法产生的中间序列。这里假设排序的目标序列是升序。数字间以空格分隔。
输出格式:
首先在第1行中输出“Insertion Sort”表示插入排序、或“Merge Sort”表示归并排序;然后在第2行中输出用该排序算法再迭代一轮的结果序列。题目保证每组测试的结果是唯一的。数字间以空格分隔,且行末不得有多余空格。
样例输入输出
样例1输入:
10
3 1 2 8 7 5 9 4 6 0
1 2 3 7 8 5 9 4 6 0输出:
Insertion Sort
1 2 3 5 7 8 9 4 6 0样例2
输入:
10
3 1 2 8 7 5 9 4 0 6
1 3 2 8 5 7 4 9 0 6输出:
Merge Sort
1 2 3 8 4 5 7 9 0 6
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
int n, j, i;
cin >> n;
int* a = new int[n];
int* b = new int[n];
for (i = 0; i < n; i++)
cin >> a[i];
for (i = 0; i < n; i++)
cin >> b[i];
int flag = -1, tag = 1, count = 0, dex;
for (i = 1; i < n; i++) {//判断是归并还是插入
if (count < 1) {
if (b[i] < b[i - 1])
{
tag = 0;
dex = i;//记录不符合非递减规则的第一个出现元素的下标
count++;
}
}
if (tag == 0)
{
if (a[i] == b[i])
flag = 1;
else {
flag = 0;
break;
}
}
}
if (flag) {//插入
cout << "Insertion Sort" << endl;
sort(b, b + dex + 1);
for (j = 0; j < n - 1; j++)
cout << b[j] << " ";
cout << b[j] << endl;
}
else {//归并
cout << "Merge Sort" << endl;
int cnt1 = 1, cnt2 = 1, cnt, m = 0, z = 0;
for (i = 1; i < n; i++)//判断头两个相邻非递减序列的长度,cnt1和cnt2;
{
if (m < 1) {
if (b[i] >= b[i - 1])
cnt1++;
else
m++;
}
else {
if (b[i] >= b[i - 1])
cnt2++;
else
break;
}
}
cnt = cnt1 < cnt2 ? cnt1 : cnt2;//取cnt1和cnt2的较小值
int x = n / (2 * cnt) * (2 * cnt);
while (z + 2 * cnt <= n) {
sort(b + z, b + z + 2 * cnt);
z += 2 * cnt;
}
if (n % (2 * cnt) != 0) {//末尾元素得处理
sort(b + x, b + n);
}
for (j = 0; j < n - 1; j++)
cout << b[j] << " ";
cout << b[j] << endl;
}
return 0;
}