数据结构排序问题小结

1.ds-希尔排序的间隔
题目描述
假设输入的序列为希尔排序的中间结果,请输出当前序列的最小间隔。

Input Format
输入N 0<N<=20。

随后输入N个整数

Output Format
序列排序的最小间隔  
样例输入输出
样例1
输入:
3
1 2 3
输出:
1
样例2
输入:
15 
18 13 5 9 10 9 19 24 17 20 17 9 20 24 21
输出:
6

#include<iostream>
using namespace std;
int main() {
	int n;
	cin >> n;
	int* a = new int[n];
	for (int i = 0; i < n; i++) {
		cin >> a[i];
	}
	int flag = 0;
	for (int m = 1; m <= n; m++) {
		for (int i = 0; i < n-m; i++) {
				if (a[i] >a[i+m])
					flag = 1;
		}
		if (flag == 0){ cout << m;
		break;}
		flag = 0;
	}
	return 0;
}

2.ds-快速排序算法
题目描述
使用快速排序算法将n个整数由小到大进行排序。并输出快排的第一趟排序结果以及最终的有序序列。

快速排序选取完pivot之后的进行整理的实现方法有很多,其中一种为”(前后指针法)“根据下面的描述进行实现并按要求输出,

以排序序列的最后一个值作为标准值pivot。

交换法:

选取最后一个关键字( pivot  )作为枢轴。
设置两个变量left = 0;right = N - 2;
从left一直向后走,直到找到一个大于等于 pivot   的值,right从后至前,直至找到一个小于 pivot   的值,然后交换这两个数。
重复第三步,一直往后找,直到left和right相遇,然后将 pivot 放置合适位置即可

输入:
n表示输入序列的长度,后边为n个要排序的整数序列,以空格分隔;

输出:
第一趟排序结果,以空格分隔,行尾无空格;

最终的有序序列结果,以空格分隔,行尾无空格;

样例输入输出
样例1

输入:

10 4 1 7 6 9 2 8 0 3 5

输出:

4 1 3 0 2 5 8 6 7 9
0 1 2 3 4 5 6 7 8 9

样例2

输入:

10 9 1 3 8 23 5 7 10 29 19

输出:

9 1 3 8 10 5 7 19 29 23
1 3 5 7 8 9 10 19 23 29
 

#include<iostream>
#include<algorithm>
using namespace std;
int main() {
	int n, x;
	cin >> n;
	int* a = new int[n];
	int* b = new int[n];
	for (int i = 0; i < n; i++) {
		cin >> x;
		a[i] = x;
		b[i] = x;
	}
	int left = 0, right = n - 2, pivot = a[n - 1];
	while (left < right) {
		while (a[left] < pivot)
			left++;
		while (a[right] > pivot)
			right--;
		if (left < right) {
			int tmp = a[left];
			a[left] = a[right];
			a[right] = tmp;
		}
	}
	for (int i = 0; i < n; i++) {
		if (a[i] > pivot) {
			int tmp = a[i];
			a[i] = pivot;
			a[n - 1] = tmp;
			break;
		}
	}
	for (int i = 0; i < n - 1; i++) {
		cout << a[i] << " ";
	}
	cout << a[n - 1] << endl;
	sort(b,b+n);
	for (int i = 0; i < n - 1; i++) {
		cout << b[i] << " ";
	}
	cout << b[n - 1] << endl;
	return 0;
}

3.ds-判断排序方法
题目描述
插入排序是迭代算法,逐一获得输入数据,逐步产生有序的输出序列。每步迭代中,算法从输入序列中取出一元素,将之插入有序序列中正确的位置。如此迭代直到全部元素有序。

归并排序进行如下迭代操作:首先将原始序列看成N个只包含1个元素的有序子序列,然后每次迭代归并两个相邻的有序子序列,直到最后只剩下1个有序的序列。

现给定原始序列和由某排序算法产生的中间序列,请你判断该算法究竟是哪种排序算法?

输入格式:

输入在第一行给出正整数N (<=100);随后一行给出原始序列的N个整数;最后一行给出由某排序算法产生的中间序列。这里假设排序的目标序列是升序。数字间以空格分隔。

输出格式:

首先在第1行中输出“Insertion Sort”表示插入排序、或“Merge Sort”表示归并排序;然后在第2行中输出用该排序算法再迭代一轮的结果序列。题目保证每组测试的结果是唯一的。数字间以空格分隔,且行末不得有多余空格。

样例输入输出
样例1

输入:

10 
3 1 2 8 7 5 9 4 6 0 
1 2 3 7 8 5 9 4 6 0

输出:

Insertion Sort 
1 2 3 5 7 8 9 4 6 0

样例2

输入:

10 
3 1 2 8 7 5 9 4 0 6 
1 3 2 8 5 7 4 9 0 6

输出:

Merge Sort 
1 2 3 8 4 5 7 9 0 6
 

#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
	int n, j, i;
	cin >> n;
	int* a = new int[n];
	int* b = new int[n];
	for (i = 0; i < n; i++)
		cin >> a[i];
	for (i = 0; i < n; i++)
		cin >> b[i];
	int flag = -1, tag = 1, count = 0, dex;
	for (i = 1; i < n; i++) {//判断是归并还是插入
		if (count < 1) {
			if (b[i] < b[i - 1])
			{
				tag = 0;
				dex = i;//记录不符合非递减规则的第一个出现元素的下标
				count++;
			}
		}
		if (tag == 0)
		{
			if (a[i] == b[i])
				flag = 1;
			else {
				flag = 0;
				break;
			}
		}
	}
	if (flag) {//插入
		cout << "Insertion Sort" << endl;
		sort(b, b + dex + 1);
		for (j = 0; j < n - 1; j++)
			cout << b[j] << " ";
		cout << b[j] << endl;
	}
	else {//归并
		cout << "Merge Sort" << endl;
		int cnt1 = 1, cnt2 = 1, cnt, m = 0, z = 0;
		for (i = 1; i < n; i++)//判断头两个相邻非递减序列的长度,cnt1和cnt2;
		{
			if (m < 1) {
				if (b[i] >= b[i - 1])
					cnt1++;
				else
					m++;
			}
			else {
				if (b[i] >= b[i - 1])
					cnt2++;
				else
					break;
			}
		}
		cnt = cnt1 < cnt2 ? cnt1 : cnt2;//取cnt1和cnt2的较小值
		int x = n / (2 * cnt) * (2 * cnt);
		while (z + 2 * cnt <= n) {
			sort(b + z, b + z + 2 * cnt);
			z += 2 * cnt;
		}
		if (n % (2 * cnt) != 0) {//末尾元素得处理
			sort(b + x, b + n);
		}
		for (j = 0; j < n - 1; j++)
			cout << b[j] << " ";
		cout << b[j] << endl;
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

*应似飞鸿踏雪泥*

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值