递推数列深造

本文深入探讨线性递推数列,讲解如何求解最小线性递推式,并介绍了Berlekamp-Massey(BM)算法。接着讨论了BM算法在求向量列、矩阵列最小线性递推式,矩阵最小多项式,解稀疏线性方程组和求稀疏矩阵行列式中的应用。同时,文章也涉及整式递推数列的定义及求解方法,阐述了计算过程中的时间和空间复杂度分析。
摘要由CSDN通过智能技术生成

线性递推数列

求数列最小线性递推式

设有数列 a 0 ⋯ a n a_0 \cdots a_n a0an r i r_i ri 为数列 a 0 ⋯ a i {a_0 \cdots a_i} a0ai 的最小线性递推式, l i l_i li r i r_i ri 的阶数。显然有 l i − 1 ⩽ l i l_{i-1} \leqslant l_i li1li。设 d i d_i di 为真实 a i a_i ai 与用 r i − 1 r_{i-1} ri1 计算出的 a i a_i ai 的差。若 d i = 0 d_i=0 di=0 r i = r i − 1 r_i=r_{i-1} ri=ri1,否则 l i > l i − 1 l_i>l_{i-1} li>l

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值