线性递推数列
求数列最小线性递推式
设有数列 a0⋯ana_0 \cdots a_na0⋯an,rir_iri 为数列 a0⋯ai{a_0 \cdots a_i}a0⋯ai 的最小线性递推式,lil_ili 为 rir_iri 的阶数。显然有 li−1⩽lil_{i-1} \leqslant l_ili−1⩽li。设 did_idi 为真实 aia_iai 与用 ri−1r_{i-1}ri−1 计算出的 aia_iai 的差。若 di=0d_i=0di=0 则 ri=ri−1r_i=r_{i-1}ri=ri−1,否则 li>li−1l_i>l_{i-1}l