线性递推数列
求数列最小线性递推式
设有数列 a 0 ⋯ a n a_0 \cdots a_n a0⋯an, r i r_i ri 为数列 a 0 ⋯ a i {a_0 \cdots a_i} a0⋯ai 的最小线性递推式, l i l_i li 为 r i r_i ri 的阶数。显然有 l i − 1 ⩽ l i l_{i-1} \leqslant l_i li−1⩽li。设 d i d_i di 为真实 a i a_i ai 与用 r i − 1 r_{i-1} ri−1 计算出的 a i a_i ai 的差。若 d i = 0 d_i=0 di=0 则 r i = r i − 1 r_i=r_{i-1} ri=ri−1,否则 l i > l i − 1 l_i>l_{i-1} li>l