项目简述:
因为在现实生活中,在进行人脸识别时,会受到多种影响因素,如光线、遮挡、口罩等,这些因素都可能导致人脸识别的准确率出现下降。另外一个问题是,一般的人脸识别算法并不能识别所有的人脸,在不同的光照条件下,或者戴口罩情况下,就会影响人脸识别的准确率。本系统亮点在于使用FaceNet算法训练出了戴口罩人脸识别模型,可以实现是否佩戴口罩的识别及已注册人脸在佩戴口罩时的身份识别,达到高准确度快速识别。根据人脸识别中存在的特征,建立可识别人的面部特征数据库,进行视觉数据处理,对图像特征进行识别。
优化识别效果,UI界面增强
学习了MTCNN和FaceNet算法,了解到它们的网络结构和算法原理,对其进行了模型训练,最终成功开发了一款人脸识别系统。MTCNN模型是采用三层级联式卷积神经网络构造而成的,用于逐渐提取人脸图像中的细节信息,并框出用于识别的人脸图像。根据人脸识别中存在的特征,建立可识别人的面部特征数据库,进行视觉数据处理,对图像特征进行识别。最后对待识别人脸特征矢量与地方矢量欧氏距离比较,得到人脸特征矢量在欧氏距离上的识别结果。
系统实现效果:
系统效果图上传......
项目总结:
目前的人脸识别技术已经比较成熟,但人脸识别准确率并不稳定。因为在现实生活中,在进行人脸识别时,会受到多种影响因素,如光线、遮挡、口罩等,这些因素都可能导致人脸识别的准确率出现下降。另外一个问题是,一般的人脸识别算法并不能识别所有的人脸,在不同的光照条件下,或者戴口罩情况下,就会影响人脸识别的准确率。本系统亮点在于使用FaceNet算法训练出了戴口罩人脸识别模型,可以实现是否佩戴口罩的识别及已注册人脸在佩戴口罩时的身份识别,达到高准确度快速识别。
GitHub开源地址: