P2973 [USACO10HOL] Driving Out the Piggies G 臭气弹/驱逐猪猡

文章描述了一个编程挑战,涉及随机过程和图论。题目给出一个由城市和双向道路组成的网络,臭气炸弹从城市1开始,按特定概率在每个城市爆炸或移动。目标是计算每个城市被污染的概率。解决方案是通过构建矩阵并使用高斯消元法求解转移概率。
摘要由CSDN通过智能技术生成

题目链接
题目:
奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡。猪猡的文明包含1到N (2 <= N <= 300)一共N个猪城。这些城市由M (1 <= M <= 44,850)条由两个不同端点A_j和B_j (1 <= A_j<= N; 1 <= B_j <= N)表示的双向道路连接。保证城市1至少连接一个其它的城市。

一开始臭气弹会被放在城市1。每个小时(包括第一个小时),它有P/Q (1 <= P <=1,000,000; 1 <= Q <= 1,000,000)的概率污染它所在的城市。如果这个小时内它没有污染它所在的城市,那麽它随机地选择一条道路,在这个小时内沿着这条道路走到一个新的城市。可以离开这个城市的所有道路被选择的概率均等。

因为这个臭气弹的随机的性质,奶牛们很困惑哪个城市最有可能被污染。给定一个猪猡文明的地图和臭气弹在每个小时内爆炸的概率。计算每个城市最终被污染的概率。

如下例,假设这个猪猡文明有两个连接在一起的城市。臭气炸弹从城市1出发,每到一个城市,它都有1/2的概率爆炸

                         1--2 

可知下面这些路径是炸弹可能经过的路径(最后一个城市是臭气弹爆炸的城市):

1: 1
2: 1-2
3: 1-2-1
4: 1-2-1-2
5: 1-2-1-2-1
...

要得到炸弹在城市1终止的概率,我们可以把上面的第1,第3,第5……条路径的概率加起来,(也就是上表奇数编号的路径)。上表中第k条路径的概率正好是,也就是必须在前k-1个回合离开所在城市(每次的概率为1 - 1/2 = 1/2)并且留在最后一个城市(概率为1/2)。

所以在城市1结束的概率可以表示为1/2 + (1/2)^3 + (1/2)^5 + …。当我们无限地计算把这些项一个个加起来,我们最后会恰好得到2/3,也就是我们要求的概率,大约是0.666666667。这意味着最终停留在城市2的概率为1/3,大约为0.333333333。

你将会在你前50次提交的时候得到部份测试数据反馈。

题目名称: dotp

输入格式:
第1行: 四个由空格隔开的整数: N, M, P, 和 Q
第2到第M+1行: 第i+1行用两个由空格隔开的整数A_j和B_j表示一条道路。

输出格式:
第1到第N行: 在第i行,用一个浮点数输出城市i被摧毁的概率。误差不超过10^-6的答案会被接受(注意这就是说你需要至少输出6位有效数字使得答案有效)。

样例输入:

 2 1 1 2
 1 2

样例输出:

0.666666667
0.333333333

私货:初音未来:没活了给大家唱首歌吧
题意概括:
给出一个n个点、m条边的无向图,在节点1有一枚炸弹。炸弹在每个节点都有 p q {p\over q} qp的概率爆炸,1- p q {p\over q} qp的概率转入其他节点,要求输出每个点的爆炸概率。


思路分析
一个无向图,联系高斯消元的矩阵,很容易想到邻接链表。
通过邻接链表我们就将一个图转换成了一个矩阵。
而对于每一个点,都有 p q {p\over q} qp的概率爆炸。
而除了炸弹所在初始点为点1外,所有的炸弹都是转入来的
我们设第i个点的转入概率是 x i x_i xi
image
对图的解释:以 x 1 x_1 x1为例子, x 1 x_1 x1是点1的转入概率,而它的系数a就是 x 1 x_1 x1转入 x 3 x_3 x3的概率,a=(1- p q {p\over q} qp)* 1 d 1 {1\over d_1} d11 d 1 d_1 d1是点1的入度)
而此方程可以将x3左移过去就有了矩阵:
a b -1 d e | 0
同理但特殊的,对于点1,最初炸弹就在这里,我们在等式左边加1,可以移动到等式右边去
得到矩阵:
-1 0 c 0 0 | -1
(因为节点1只和3相连所以 x 2 x_2 x2 x 4 x_4 x4 x 5 x_5 x5的系数都是0)
我们得到了矩阵,就可以运用高斯消元得到未知数 x i x_i xi的值
该值乘上 p q {p\over q} qp就得到了在该点爆炸的概率。
注意:
p/q应是double类型

Miku’s Code:

#include<bits/stdc++.h>
using namespace std;

const int maxn=350;
const int eps=1e-8;

int n,m,p,q;
double k;
int d[maxn];
double a[maxn][maxn];
bool cont[maxn][maxn];

void input(){						//输入
	scanf("%d%d%d%d",&n,&m,&p,&q);
	int A,B;
	for(int i=1;i<=m;++i){
		scanf("%d%d",&A,&B);
		cont[A][B]=true;cont[B][A]=true;
		++d[A];++d[B];
	}
}

void change(){						//转化出矩阵
	a[1][n+1]=-1;
	k=(double)p/q;
	for(int i=1;i<=n;++i){
		a[i][i]=-1;
		for(int j=1;j<=n;++j){
			if(cont[i][j]==true){
				a[i][j]=(1-k)/d[j];
			}
		}
	}
}

void try_(){						//调试代码
	for(int i=1;i<=n;++i){
		for(int j=1;j<=n+1;++j){
			if(j==n+1)	cout<<"| ";
			cout<<a[i][j]<<' ';
		}
		cout<<endl;
	}
}

void work(){						//高斯约旦消元板子
	for(int i=1;i<=n;++i){
		int y=i;
		while(fabs(a[y][i])<=fabs(eps)&&y<=n)	++y;
		for(int j=1;j<=n+1;++j){
			swap(a[i][j],a[y][j]);
		}
		double k=a[i][i];
		for(int j=1;j<=n+1;++j){
			a[i][j]/=k;
		}
		for(int j=1;j<=n;++j){
			if(i!=j){
				double ki=a[j][i];
				for(int q=1;q<=n+1;++q){
					a[j][q]-=ki*a[i][q];
				}
			}
		}
	}
}

int main(){
	input();
	change();
	//try_();
	work();
	//try_();
	for(int i=1;i<=n;++i){
		printf("%.6lf\n",a[i][n+1]*k);
	}
	return 0;
}

注:本人不是Miku黑,整活部分如有冒犯请见谅。
QAQ

### 回答1: p109 [noip2004 提高组] 合并果子: 这道题目是一道经典的贪心算法题目,题目大意是给定n个果子,每个果子的重量为wi,现在需要将这n个果子合并成一个果子,每次合并需要消耗的代价为合并的两个果子的重量之和,求最小的代价。 我们可以使用贪心算法来解决这个问题,每次选择两个最小的果子进行合并,然后将合并后的果子的重量加入到集合中,重复这个过程直到只剩下一个果子为止。 这个算法的正确性可以通过反证法来证明,假设存在一种更优的合并方案,那么这个方案一定会在某一步将两个比当前选择的两个更小的果子进行合并,这样就会得到一个更小的代价,与当前选择的方案矛盾。 usaco06nov fence repair: 这道题目是一道经典的贪心算法题目,题目大意是给定n个木板,每个木板的长度为li,现在需要将这n个木板拼接成一块长度为L的木板,每次拼接需要消耗的代价为拼接的两个木板的长度之和,求最小的代价。 我们可以使用贪心算法来解决这个问题,每次选择两个最小的木板进行拼接,然后将拼接后的木板的长度加入到集合中,重复这个过程直到只剩下一个木板为止。 这个算法的正确性可以通过反证法来证明,假设存在一种更优的拼接方案,那么这个方案一定会在某一步将两个比当前选择的两个更小的木板进行拼接,这样就会得到一个更小的代价,与当前选择的方案矛盾。 ### 回答2: 题目描述: 有n个果子需要合并,合并任意两个果子需要的代价为这两个果子的重量之和。现在有一台合并机器,可以将两个果子合并成一堆并计算代价。问将n个果子合并成一堆的最小代价。 这个问题可以用贪心算法来解决,我们可以使用一个最小堆来存储所有果子的重量。每次从最小堆中取出两个最小的果子,将它们合并成为一堆,并将代价加入答案中,将新堆的重量加入最小堆中。重复以上步骤,直到最小堆中只剩下一堆为止。这样得到的代价就是最小的。 证明如下: 假设最小堆中的果子按照重量从小到大依次为a1, a2, ..., an。我们按照贪心策略,每次都将重量最小的两个果子合并成为一堆,设合并的过程为b1, b2, ..., bn-1。因此,可以发现,序列b1, b2, ..., bn-1必然是一个前缀和为a1, a2, ..., an的 Huffman 树变形。根据哈夫曼树的定义,这个树必然是最优的,能够得到的代价最小。 因此,使用贪心策略得到的答案必然是最优的,而且时间复杂度为O(n log n)。 对于[usaco06nov] fence repair g这道题,其实也可以用相同的思路来解决。将所有木板的长度存储在一个最小堆中,每次取出最小的两个木板长度进行合并,代价即为这两个木板的长度之和,并将合并后木板的长度加入最小堆中。重复以上步骤,直到最小堆中只剩下一块木板。得到的代价就是最小的。 因此,贪心算法是解决这类问题的一种高效、简单但有效的方法,可以应用于很多有贪心性质的问题中。 ### 回答3: 这两个题目都需要对操作进行模拟。 首先是合并果子。这个题目先将所有果子放进一个优先队列中。每次取出来两个果子进行合并,直到只剩下一个果子即为答案。合并的代价为两个果子重量之和。每次合并完之后再将新的果子放入优先队列中,重复上述过程即可。 再来看fence repair。这个题目需要用到贪心和并查集的思想。首先将所有板子的长度放入一个最小堆中,每次取出堆顶元素即为最短的板子,将其与其相邻的板子进行合并,合并的长度为这两块板子的长度之和。操作完之后再将新的板子长度放入最小堆中,重复上述过程直到只剩下一块板子。 关于合并操作,可以使用并查集来实现。维护每个板子所在的集合,每次操作时合并两个集合即可。 最后,需要注意的是题目中给出的整数都很大,需要使用long long来存储避免溢出。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值