BZOJ 1778 Usaco2010 驱逐猪猡

本题我用一个更直观的方法来求解,与网上的做法不同。

提示:
1. 在每个城市中爆炸的概率和另外一个量有关,也就是说我们尝试间接求这个概率,容易许多。
2. 这个量我们经常在概率问题中碰到,可以考虑猜猜我们经常求的那些……

注意: 输出带上 fabs() , 因为可能出现 0.00000
代码后我将详细说明:

#include <bits/stdc++.h>
using namespace std;
const int maxn = 310;

int n , m ;
double p , q;

int g[maxn][maxn] , e[maxn];
double a[maxn][maxn];

void gaussJohdan()
{
    for(int i=1;i<=n;i++)
    {
        int r = i;
        for(int j=i+1;j<=n;j++) if(fabs(a[j][i]) > fabs(a[r][i])) r = j;
        if(r != i) for(int j=1;j<=n+1;j++) swap(a[i][j] , a[r][j]);

        for(int k=1;k<=n;k++) if(k != i) for(int j=n+1;j>=i;j--) a[k][j] -= a[k][i] / a[i][i] * a[i][j];
    }
}

int main(int argc, char *argv[]) {

    cin>>n>>m>>p>>q;
    p /= q; p = 1-p;

    while(m--)
    {
        int x , y;
        scanf("%d%d" , &x , &y);
        g[x][y] = g[y][x] = 1;
        e[x]++; e[y]++;
    }

    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++) if(g[i][j]) a[i][j] = p / e[j];
        a[i][i] --;
    }
    a[1][n+1]--;

    gaussJohdan();
    double all = 0;
    for(int i=1;i<=n;i++) all += a[i][n+1]/=a[i][i];
    for(int i=1;i<=n;i++) printf("%.9lf\n" , fabs(a[i][n+1]/all));

    return 0;
}

我们求出每个城市的期望经过次数 Si , 那么第 i 个城市的答案就是:Sis

这个我想并不难理解,因为每经过一次爆炸的可能都是相同的,所以每个城市爆炸的概率就与每个城市的期望经过次数正相关。然而求期望经过次数我想难不到读者吧。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值