初学python记录:力扣1793. 好子数组的最大分数

题目:

给你一个整数数组 nums (下标从 0 开始)和一个整数 k 。

一个子数组 (i, j) 的 分数 定义为 min(nums[i], nums[i+1], ..., nums[j]) * (j - i + 1) 。一个  子数组的两个端点下标需要满足 i <= k <= j 。

请你返回子数组的最大可能分数 。

思考:

1. 最直接的解法依然是遍历,分别用i和j指向数组头和尾,计算每一个子数组的分数并与上一个分数比较,若更大则代替。代码如下:

class Solution(object):
    def maximumScore(self, nums, k):
        """
        :type nums: List[int]
        :type k: int
        :rtype: int
        """
        n = len(nums)
        i = 0
        j = n-1
        score = 0
        while(i <= k <= j):
            for i in range(0, k+1):
                new_score = min([nums[x] for x in range(i, j+1)]) * (j-i+1)
                if new_score > score:
                    score = new_score
            j -= 1
        
        return score

显而易见的超时了T_T:

可以看到上述解法是两个循环嵌套,时间复杂度为O(n²)。

2. 既然子数组必须包含nums[k],那么我们以 nums[k]为中心,向左/右逐个增加元素扩充子数组,每增加一个元素就判断一次分数是否变大。

由分数的计算公式可知,我们要尽可能:1.使子数组中包含大的数;2.使子数组的元素尽可能多。

那么我们在每次扩充子数组时,选择相邻元素中更大的数加入子数组。直到子数组扩展至与原数组相同为止,结束循环。

代码如下,时间复杂度为O(n):

class Solution(object):
    def maximumScore(self, nums, k):
        """
        :type nums: List[int]
        :type k: int
        :rtype: int
        """
        n = len(nums)
        i = k-1
        j = k+1
        # 从k的位置向左右扩充子数组
        score = 0
        x = nums[k]
        # x代表当前子数组中最小值
        while True:
            # 若左/右数大于等于x,则直接加入子数组,因为其值对分数没有影响
            while(i >= 0 and nums[i] >= x):
                i -= 1
            while(j <= n-1 and nums[j] >= x):
                j += 1
            # 每次循环更新最大分数
            # 由于此处的i比题意中i小1,j比题意中大1,所以公式不是min*(j-i+1),而是min*(j-i-1)
            score = max(score, x*(j-i-1))
            # 目前左右数都小于x或没有数
            # 若左右都没有数则退出循环,否则选相对更大的数加入子数组
            x = max((-1 if i == -1 else nums[i]), (-1 if j == n else nums[j]))
            if x == -1:
                break

        return score

         

运行通过:

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值