关于类加载的loadClass()方法的讲解

1.关于类加载的loadClass()方法的讲解

loadClass()方法是ClassLoader类中的一个方法

loadClass()方法源码:

protected Class<?> loadClass(String name, boolean resolve)
        throws ClassNotFoundException
    {
        synchronized (getClassLoadingLock(name)) {
            // First, check if the class has already been loaded
            /*第一先判断这个类有没有被加载过
             如果加载过,返回该类的Class<?>对象
             没有加载过返回 null          
            */
            Class<?> c = findLoadedClass(name);
            //如果这个类没有加载过
            if (c == null) {
                long t0 = System.nanoTime();
                try {
                	//先看父类加载器可不可以加载,parent == null代表着使用根类加载器加载
                    if (parent != null) {
                        c = parent.loadClass(name, false);
                    } else {
                        c = findBootstrapClassOrNull(name);
                    }
                } catch (ClassNotFoundException e) {
                    // ClassNotFoundException thrown if class not found
                    // from the non-null parent class loader
                }
				//如果父类加载器加载不了,再用本类加载器加载
                if (c == null) {
                    // If still not found, then invoke findClass in order
                    // to find the class.
                    long t1 = System.nanoTime();
                    c = findClass(name);

                    // this is the defining class loader; record the stats
                    sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0);
                    sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1);
                    sun.misc.PerfCounter.getFindClasses().increment();
                }
            }
            //resolve为true进行类加载链接操作,反之不进行
            if (resolve) {
                resolveClass(c);
            }
            return c;
        }
    }

流程图

在这里插入图片描述

在Keras中,有多种方法可以用来建立数据集。下面是一些常用的方法: 1. ImageDataGenerator类:用于加载图像数据集,并且可以进行数据增强等操作。常用于图像分类问题。 2. Sequence类:用于加载时序数据集,并且可以进行数据预处理等操作。常用于时序数据的预测问题。 3. TextVectorization类:用于加载文本数据集,并且可以进行文本向量化等操作。常用于文本分类问题。 4. Dataset类:用于加载通用数据集,并且可以进行数据预处理等操作。常用于自定义数据集的加载。 下面是一些常用的代码示例: 1. ImageDataGenerator类 ```python from keras.preprocessing.image import ImageDataGenerator # 加载ImageDataGenerator类 datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True) # 加载数据集 train_generator = datagen.flow_from_directory('data/train', target_size=(224, 224), batch_size=32, class_mode='binary') ``` 这里的代码将训练集数据的路径设置为“data/train”,将图片的大小设置为224x224,将每个批次的大小设置为32,将问题设置为二分类问题。ImageDataGenerator类还设置了一些数据增强的参数。 2. Sequence类 ```python from keras.utils import Sequence class MySequence(Sequence): def __init__(self, x_set, y_set, batch_size): self.x, self.y = x_set, y_set self.batch_size = batch_size def __len__(self): return math.ceil(len(self.x) / self.batch_size) def __getitem__(self, idx): batch_x = self.x[idx * self.batch_size:(idx + 1) * self.batch_size] batch_y = self.y[idx * self.batch_size:(idx + 1) * self.batch_size] # 加载数据并进行预处理 # ... return batch_x, batch_y # 加载数据集 x_train, y_train = load_data('data/train') # 定义Sequence类 my_sequence = MySequence(x_train, y_train, batch_size=32) ``` 这里的代码定义了一个名为MySequence的Sequence类,并且将x_train和y_train传递给了MySequence类。MySequence类实现了__getitem__方法和__len__方法,用于加载数据并进行预处理等操作。 3. TextVectorization类 ```python from keras.layers.experimental.preprocessing import TextVectorization # 加载TextVectorization类 vectorizer = TextVectorization(max_tokens=1000, output_mode='int', output_sequence_length=100) # 加载数据集 train_text = ['This is a cat', 'This is a dog', 'This is a bird'] vectorizer.adapt(train_text) # 转换文本数据为整数序列 train_data = vectorizer(train_text) ``` 这里的代码将训练集数据设置为3个文本数据,使用TextVectorization类将文本数据向量化成整数序列,并且将序列长度设置为100。 4. Dataset类 ```python import tensorflow as tf # 加载数据集 train_data = tf.data.Dataset.from_tensor_slices((x_train, y_train)) # 数据预处理 train_data = train_data.shuffle(1000).batch(32) ``` 这里的代码使用Dataset类加载数据集,并且使用shuffle和batch方法进行数据预处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值