非监督学习应用练习

本文通过三星Human Activity Recognition数据集,实践非监督学习的聚类方法。首先进行数据预处理,然后应用PCA降维保留90%方差。接着,使用KMeans进行聚类,并探讨不同聚类数目的效果。最后,通过比较KMeans与Agglomerative聚类的兰德指数(ARI),评估聚类效果。
摘要由CSDN通过智能技术生成

非监督学习应用练习


本次中,我们将对数据降维和聚类方法的工作原理进行练习。

我们将使用三星提供的 * Human Activity Recognition 活动识别数据集* 。这些数据来自三星 Galaxy S3 手机的加速度计和陀螺仪,你可以通过上面的链接找到有关这些功能的更多信息)。这些活动类型包括:走路,站立,躺下,坐着或爬楼梯。

接下来的挑战过程中,我们首先假装不了解活动的类型,并尝试纯粹基于特征对样本进行聚类。然后,我们将确定身体活动类型的问题解决为分类问题。

我们先导入本次挑战可能会用到的模块和函数。

from sklearn.svm import LinearSVC
from sklearn.prep
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Deng872347348

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值