- 博客(387)
- 资源 (17)
- 收藏
- 关注
原创 决策树和 K 近邻分类
本次分别运用决策树和最近邻方法在分类任务上构建模型,并通过交叉验证对模型进行调优。在深入本次学习之前,首先了解一下什么是机器学习, Machine Learning(T. Mitchell 著,1997 年出版)一书中给出了机器学习经典、通用的定义:假设用 P 来评估计算机程序在某任务类 T 上的性能,若一个程序利用经验 E 在任务 T 上获得了性能改善,则我们就说关于 T 和 P, 该程序对 E 进行了学习。在不同的问题设定下,T、P、E 可能指完全不同的东西。分类:基于特征将实例分为某一类。
2023-05-18 15:29:43 699 2
原创 Python 数据可视化分析
在机器学习领域中,可视化是十分重要的。在开始一项新任务时,通过可视化手段探索数据能更好地帮助人们把握数据的要点。在分析模型表现和模型报告的结果时,可视化能使分析显得更加生动鲜明。有时候,为了理解复杂的模型,我们还可以将高维空间映射为视觉上更直观的二维或三维图形。总而言之,可视化是一个相对快捷的从数据中挖掘信息的手段。本文将使用 Pandas、Matplotlib、seaborn 等流行的库,带你上手可视化。
2023-05-18 09:22:49 1256
原创 使用 Pandas 进行数据探索
本次通过分析电信运营商的客户离网率数据集来熟悉 Pandas 数据探索的常用方法,并构建一个预测客户离网率的简单模型。本次使用 Pandas 对数据进行了一定程度的分析和探索,交叉表、透视表等方法的运用将使你在数据探索过程中事半功倍。相关链接** Pandas 官方文档** scipy-lectures.org 教程*
2023-05-14 14:46:38 483
原创 时间序列处理与应用
一般情况下,在进行数据分析时,几乎都会遇到与时间序列相关的任务。例如:某企业的某项指标在第二天或者每周,又或每月等会发生什么;某款应用每天的下载量是多少等等。在本节实验中,将使用不同的方法来处理这些与时间序列相关的任务。在本节中,还会介绍如何使用 Python 中的时间序列处理工具,可以使用哪些方法和模型进行预测,什么是双指数和三指数拟合,如果遇到非平稳的数据该怎么办,如何建立 SARIMA 模型,如何使用 XGBoost 进行预测等。此外,本次也会将这些算法应用在来自实际采集的数据中。
2023-05-12 09:32:35 535
原创 线性回归和随机梯度下降
接下来,你需要实现一个使用随机梯度下降方法的线性回归类,并使其可以完成训练和测试的过程。本次中,你需要使用随机梯度下降方法来完成线性回归问题。来计算普通最小二乘法得到在验证集上的 MSE 值。每个样本数据包含 2 个特征,我们绘制二维散点图。然后将数据集切分为训练和验证数据,并进行规范化。我们同样可以将规范化之后的训练数据绘制成散点图。打印出 MSE 的最小值,以及最终的权重系数。作出预测,并计算验证集上的 MSE 值。下面,加载挑战所使用的示例数据集。1 在训练过程中的变化曲线。得到的结果在 10−4。
2023-05-05 08:57:06 510
原创 python3.11的版本,运行 django项目 报错AttributeError: module ‘collections‘ has no attribute ‘Iterator‘
Python 3.11中已经将collections.Iterable改为typing.Iterable,而Django 2.2和以前的版本中使用了collections.Iterator,因此无法兼容Python 3.11。
2023-04-23 10:47:11 5698
原创 Tkinter 图形界面日历
用python程序实现制作一个 Tkinter 图形界面日历,用户选择某年某月,图形化显示当月日历功能。创建日历界面整个组件的布局是 8x7 的 grid 表格方式。第一行显示日历头部,包括年月日的显示与选择;第二行显示周日、周一、周二、周三、周四、周五、周六标签;OptionMenu 为可选菜单可以使用变量的 get 方法获得选取的选项值。这个程序创建了一个名为 “Calendar” 的窗口,其中包括带有年份和月份的 OptionMenu、星期标签、用于向前/向后浏览月份的按钮以及日期网格。
2023-04-22 14:54:58 549
原创 非监督学习应用练习
这些数据来自三星 Galaxy S3 手机的加速度计和陀螺仪,你可以通过上面的链接找到有关这些功能的更多信息)。这里,我们使用某一原始类别被 KMeans 聚类后的最大数量簇,除以原始类别总数来表征聚类的分散程度。接下来的挑战过程中,我们首先假装不了解活动的类型,并尝试纯粹基于特征对样本进行聚类。接下来,请使用实验中介绍的方法,通过求解观测数据点与其所在的簇的质心之间的平方距离之和来选择本次数据的最佳聚类 K 值。不出意外时,这里的最佳聚类 K 值应该为 2,也就是将数据聚集为 2 类。
2023-04-22 10:23:09 317
原创 Python 使用pipreqs命令生成 `requirements.txt`报错
后面经过检查发现,是pipreqs的这个模块问题,使用 pip uninstall pipreqs 命令先删除这个模块,后面pip install pipreqs 重新安装这个模块。删除pip.exe,重新安装pip.exe。我重新安装后面,发现这个问题没有解决。pipreqs这个模块的问题。在命令后面加编码格式就行。运行成功,编码问题解决。
2023-04-21 21:30:07 1215
原创 红酒质量数据回归探索
红酒质量数据集同样来自于 UCI 数据集网站。首先,导入所需模块。读取并预览数据集,同时查看数据集列属性。下面,将数据集按 7:3 分割成训练集和测试集,设置,同时使用对特征数据规范化。
2023-04-21 15:23:33 254
原创 构建信用评分预测分类模型
另一方面,Logistic 回归的主要优点是我们可以解释特征对模型结果的影响。让我们试着找到模型最佳正则化系数,该系数在逻辑回归中由 C 系数指定,其作用是得到一个不过度拟合的最优模型。AUC 值介于 0 到 1 之间,接近 1 则表示分类模型的质量越好。SeriousDlqin2yrs 即为目标值,0 代表正常偿还,1 代表延迟偿还。现在,我们将创建一个 LogisticRegression 模型,并使用。接下来,我们构建随机森林分类预测模型,首先导入所需类。同样,这里为了找到最佳参数值,使用。
2023-04-21 09:10:13 243
原创 逻辑回归用于讽刺文本检测
可以看的,二者在不同长度区间范围(横坐标)的计数分布比较均匀。接下来,我们训练讽刺评论分类预测模型。这里,我们使用 tf-idf 提取文本特征,并建立逻辑回归模型。由于讽刺评论的标签为 1,正常评论为 0,所以通过。我们可以发现,讽刺评论通常都喜欢使用 yes, clearly 等带有肯定意味的词句。同理,可以从用户的维度去分析讽刺评论的比例分布。由于数据量较大,代码执行时间较长,请耐心等待。特征,同样完成切分。首先,使用条形图可视化讽刺和正常文本长度,这里利用。发表评论的数量、讽刺评论的数量及比例。
2023-04-21 09:09:27 617
原创 决策树和随机森林分析应用
接下来,我们创建一个示例数据集,该数据集表示了 A 会不会和 B 进行第二次约会。而数据集中的特征包括:外貌,口才,酒精消费,以及第一次约会花了多少钱。接下来,我们需要对类别特征进行独热编码,以保证数据集特征全部为数值类型方便后续传入模型。可以看的测试数据中,年龄 Age 是 object 类型,我们需要修复其为整数类型。然后,对连续特征使用中位数对缺失数据进行填充,而类别特征则使用众数进行填充。然后,对数据集进行一些必要的清洗。接下来,查看训练数据集目标分布计数,同时绘制各项特征的关联分布图像。
2023-04-20 10:23:31 205
原创 Node.js 事件
Node.js 异步编程是基于一些惯用的异步事件完成的。将会从 Node.js 的事件、监听器的整个生命周期这两个角度,对 Node.js 作进一步讲解。大多数 Node.js 核心 API 构建于惯用的异步事件驱动架构,其中某些类型的对象(又称触发器,Emitter)会触发命名事件来调用函数(又称监听器,Listener)。打开文件时会发出一个事件。可以通过获得event模块。通常,事件名采用“小驼峰式”(即第一个单词全小写,后面的单词首字母大写,其它字母小写)命名方式。所有能触发事件的对象都是。
2023-04-20 09:48:43 391
原创 Node.js 函数
Node.js 大部分模块都由 js 编写,所以函数的语法与 js 基本相同,我们将不再对基础的函数内容进行讲述,而是对一些复杂的函数进行学习。通过本节的学习,你将会对 Node.js 异步编程中大量使用的回调函数产生更深的理解。另外,你还将学习到 ES6 标准新增的一种函数:匿名函数。Node.js 中的函数匿名函数Node.js 异步编程回调函数是函数中较难理解的部分,需要动手编写调试,加深记忆。
2023-04-19 19:39:55 381
原创 心血管疾病数据探索分析
让我们来看看最右上角的矩形,也就是 60 到 65 岁的吸烟男性的子集。它利用单调方程评价两个统计变量的相关性,是用于衡量两个变量的依赖性的非参数指标。前面的探索中,我们知道性别对应 1 和 2,虽然不知道不同性别对应哪个值,但可以通过平均身高和体重来确定。接下来,让我们按目标值分割数据集,这样往往可以通过绘图结果快速找出相对重要的特征。你可能会注意到给出的数据并不够完美,在进一步可视化之前,我们需要对数据进行清洗。要更好地理解数据集特征,接下来使用过滤之后的数据创建特征之间相关系数的矩阵。
2023-04-19 17:23:45 536
原创 人口收入普查数据探索
Adult 数据集是一个关于人口收入普查的数据集,其包含多个特征,目标值为类别类型。问题:* 统计数据集中最长周工作小时数及对应的人数,并计算该群体中收入超过 50K 的比例。年收入超过 50K 和低于 50K 人群年龄的平均值和标准差是多少?统计男性高收入人群中已婚和未婚(包含离婚和分居)人群各自所占数量。计算各国超过和低于 50K 人群各自的平均周工作时长。统计不同种族和性别人群的年龄分布数据。数据集中女性的平均年龄是多少?数据集中德国公民的比例是多少?数据集中有多少男性和女性?
2023-04-19 15:47:58 515
原创 Node.js 模块
将对 Node.js 的包和模块的概念进行讲述。包用于管理多个模块及其依赖关系,可以对多个模块进行封装,包的根目录必须包含 package.json 文件。name:包名。包名是唯一的,只能包含小写字母、数字和下划线。version:包版本号。description:包说明。keywords:关键字数组,用于搜索。homepage:项目主页。bugs:提交 bug 的地址。license:许可证。maintainers:维护者数组。contributors:贡献者数组。
2023-04-19 09:10:08 458
原创 Node.js 简介及简单使用
Node.js 简介及简单使用简介知识点Node.js 概述Node.js 特点Node.js 适用场景NPM 介绍启动 Node 终端简单的表达式运算使用变量多行表达式下划线变量REPL 常用命令运行 JavaScript 文件全局变量Node.js 创建第一个应用Node.js 调试总结开始进行 Node.js 第一课的学习。将对 Node.js 进行简单的介绍,对 Node.js 的特点及适用场景进行讲述。
2023-04-18 19:53:15 822
原创 深度学习-PyTorch 基础
PyTorch 是由 Facebook 主导开发的深度学习框架,因其高效的计算过程以及良好的易用性被诸多大公司和科研人员所喜爱。本次实验中,我们将学习 PyTorch 的基础语法,了解 Autograd 自动求导机制,并最终利用 PyTorch 构建可用于图像分类任务的人工神经网络。从之前的神经网络一节复制神经网络代码,并修改输入为 3 通道图像。我们使用交叉熵作为损失函数,使用带动量的随机梯度下降完成参数优化。我们使用交叉熵作为损失函数,使用带动量的随机梯度下降完成参数优化。
2023-04-18 14:04:53 230
原创 Matplotlib 二维图像绘制方法
Matplotlib 是支持 Python 语言的开源绘图库,因为其支持丰富的绘图类型、简单的绘图方式以及完善的接口文档,深受 Python 工程师、科研学者、数据工程师等各类人士的喜欢。本次实验课程中,我们将学会使用 Matplotlib 绘图的方法和技巧。上面,我们绘制了简单的基础图形,但这些图形都不美观。你可以通过更多的参数来让图形变得更漂亮。我们已经知道了,线形图通过方法绘出。其中,args代表数据输入,而kwargs的部分就是用于设置样式参数了。二维线形图* 包含的参数*参数含义。
2023-04-17 17:27:13 595
原创 Matplotlib 二维图像绘制方法
Matplotlib 是支持 Python 语言的开源绘图库,因为其支持丰富的绘图类型、简单的绘图方式以及完善的接口文档,深受 Python 工程师、科研学者、数据工程师等各类人士的喜欢。本次实验课程中,我们将学会使用 Matplotlib 绘图的方法和技巧。上面,我们绘制了简单的基础图形,但这些图形都不美观。你可以通过更多的参数来让图形变得更漂亮。我们已经知道了,线形图通过方法绘出。其中,args代表数据输入,而kwargs的部分就是用于设置样式参数了。二维线形图* 包含的参数*参数含义。
2023-04-17 17:26:34 555
原创 Python 生成个性二维码
按需要将上面的码字序列分块,并根据纠错等级和分块的码字,产生纠错码字,并把纠错码字加入到数据码字序列后面,成为一个新的序列。在规格确定的条件下,将上面产生的序列按次序放入分块中,将数据转成能够画出二维码的矩阵。下面我们将一起来读下MyQR的源码内容,并且针对重点部分给大家详细讲解。将数据字符转换为位流,每8位一个码字,整体构成一个数据的码字序列。将新加的图片覆盖原有的二维码图片,生成新的图片并保存。确定编码的字符类型,按相应的字符集转换成符号字符。源码简单的解读就是这些,如果想更深入的了解,请直接。
2023-04-17 14:04:12 326
原创 Flask项目运行报错解决:sqlalchemy.exc.OperationalError
我之前用的连接方法换到了朋友的环境下竟然不能用了,我认为是依赖版本的问题,我用的SQLAlchemy和朋友用的不一样,所以出现了问题,这里更换了URI就不会报错了。SQLAlchemy 1.4 文档地址:https://docs.sqlalchemy.org/en/14/errors.html#error-e3q8。数据库密码一部分对了,就是有多个数据库链接文件,有一部分对了,一部分错误。测试通过后,就可以修改URI地址,从文档找出合适当前版本的连接方法。仔细检查数据库文件,并且把数据库密码文件写对。
2023-04-11 22:01:04 1651
原创 flask 项目启动报错:OSError OSError: [Errno 22] Invalid argument
还可以可以在脚本中更改端口以破坏应用程序。可能已在其他地方使用。因此,在其他端口上运行 Flask 应用程序可能会解决它。如果在linux系统上面使用下面命令。winow系统使用下面命令。
2023-04-11 21:57:51 905
原创 flask-migrate新版本使用
如果Python Flask使用数据迁移报错:ImportError: cannot import name ‘MigrateCommand’ from ‘flask_migrate’说明你的版本是新的版本,可以参考flask-migrate新版本的问题。
2023-04-10 16:25:28 522
原创 Python Flask使用数据迁移报错:ImportError: cannot import name ‘MigrateCommand‘ from ‘flask_migrate‘
问题原因不支持 Flask-Script 的版本。
2023-04-10 16:19:14 733
原创 Pyechart使用数据绘图报错:TypeError: __init__() got an unexpected keyword argument ‘title_pos‘
dukpy安装失败,尝试用“pip install dukpy”安装dukpy,失败,报错里显示安装失败的原因是缺少C++编译环境于是我安装了Visual Studio C++ build tools,网址如下:(记得要勾选C++那个模块,不过巨占内存6个多G)代码中Geo的实例化方法是老版,适用于0.5版本的pyecharts。如果出现安装dukpy报错,说明电脑没有这个环境,要安装一下。使用下面命令安装,这样可以避免出现安装库信任问题。应该是你的库名字写错了,或者用下面解决。2、用如下命令安装旧版。
2023-04-08 12:14:03 2934
原创 如何快速的了解gpt
尝试使用GPT API:OpenAI提供了GPT-3的API接口,用户可以通过该接口使用GPT-3生成自然语言文本,可以尝试使用该API来体验GPT的能力和应用场景。了解预训练语言模型:预训练语言模型是一种人工智能技术,可以通过大量语言数据的训练,自动学习语言的规律和语义。理解GPT的基本结构:GPT使用了一个基于自注意力机制的神经网络结构,具有多层编码器的架构,用于生成文本或答案。总之,通过对预训练语言模型和GPT的了解,可以更好地理解GPT的实现原理和应用场景。也注册了一个自己的gpt账号。
2023-04-03 16:54:46 662
svm支持向量机python代码
2023-04-23
PyQt 5实战指南:手把手教你掌握100个精彩案例-白振勇-zhelper-search.pdf
2023-04-15
数据挖掘-购物篮关联规则分析
2023-03-24
python实现乒乓球游戏
2023-03-24
HTML 实现扫雷游戏,前端案例
2022-05-06
HTML5 实现拼图游戏,2048拼图游戏
2022-05-06
哈夫曼树的介绍.pdf
2020-12-14
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人