这是一道缝合题。
可以看作两道题。
- 求叶子到根路径的中位数。
- 叶子取值的博弈问题。
说句实话,我觉得 BinBin 写得比我好,大家可以看他的。
求叶子到根路径的中位数
首先我们得弄明白怎么求中位数。
一种实现是对顶堆,我不喜欢它,但是它很快很好写,本题需要删除操作,可以考虑使用两个 multiset
实现。
一种实现是权值线段树查排名,我暗恋它,它又慢又不好写,本文使用这种方法。
那么转移到一棵树上怎么做呢?权值线段树的插入和删除都是很容易的,我们直接使用 DFS 遍历树。
到达一个节点时,我们将其值插入权值线段树,完成树内遍历后,删除这个值,离开。
那么显然我们到达某一节点时权值线段树保存的是这个节点到根的路径上的所有值,利用线段树的性质,我们可以很容易求出中位数。
我们设 m d x md_x mdx 表示 x x x 到根路径上的值即可。
这个博弈游戏
题目给了一个有点智障的博弈游戏,我们考虑动态规划,设 f x f_x fx 表示在 x x x 的子树进行博弈游戏
至于先手后手显然是由 x x x 的深度的奇偶性决定的,所以对于每一个 x x x 都有且只有一种可能,要么是先手走要么是右手走,无需增加一维表示。
因此我们以三种情况动态规划:
- 叶子节点值为 f x = m d x f_x=md_x fx=mdx。
- 先手值为 f x = max y ∈ x s o n f y f_x=\max\limits_{y\in xson}f_y fx=y∈xsonmaxfy。
- 后手值为 f x = min y ∈ x s o n f y f_x=\min\limits_{y\in xson}f_y fx=y∈xsonminfy。
本题即可轻松解决。
#include<bits/stdc++.h>
#define LL long long
using namespace std;
const LL N=3e6+5;
const LL inf=1e9;
struct node
{
LL lc,rc,sz;
}t[N];
vector<LL>v[N];
LL n,a[N],tot,rt,x,y,md[N],f[N];
void ins(LL &rt,LL x,LL k,LL l,LL r)
{
if(x<l||r<x)return;
if(rt==0)rt=++tot;
if(l==r)
{
t[rt].sz+=k;
return;
}
LL mid=(l+r)/2;
ins(t[rt].lc,x,k,l,mid);
ins(t[rt].rc,x,k,mid+1,r);
t[rt].sz=t[t[rt].lc].sz+t[t[rt].rc].sz;
}
LL rk(LL &rt,LL k,LL l,LL r)
{
if(l==r)return l;
LL mid=(l+r)/2;
LL lc=t[rt].lc,rc=t[rt].rc;
if(k<=t[lc].sz)return rk(lc,k,l,mid);
return rk(rc,k-t[lc].sz,mid+1,r);
}
void dfs(LL x,LL fa)
{
ins(rt,a[x],1,1,inf);
if(t[rt].sz&1)
{
md[x]=rk(rt,(t[rt].sz+1)/2,1,inf);
}
else
{
md[x]=(rk(rt,(t[rt].sz)/2,1,inf)+rk(rt,t[rt].sz/2+1,1,inf))/2;
}
for(LL i:v[x])
{
if(i==fa)continue;
dfs(i,x);
}
ins(rt,a[x],-1,1,inf);
}
void dfs2(LL x,LL fa,LL k)
{
if(k==1)f[x]=inf*inf;
for(LL i:v[x])
{
if(i==fa)continue;
dfs2(i,x,k^1);
if(k==1)f[x]=min(f[x],f[i]);
else f[x]=max(f[x],f[i]);
}
LL len=v[x].size()-(fa!=0);
if(len==0)f[x]=md[x];
}
int main()
{
scanf("%lld",&n);
for(int i=1;i<=n;i++)
{
scanf("%lld",&a[i]);
}
for(int i=1;i<=n-1;i++)
{
scanf("%lld%lld",&x,&y);
v[x].push_back(y);
v[y].push_back(x);
}
dfs(1,0);
dfs2(1,0,0);
printf("%lld",f[1]);
return 0;
}