一、直接插入排序
//插入排序
//1.针对比较小的数组,排序效率比较高
//2.如果数组本身已经比较有序,此时排序效率也比较高
//时间复杂度:O(N^2) 稳定性:稳定
public static void insertSort(int[] arr) {
// 这个循环就是在控制代码进行 N 次插入过程
for (int bound = 1; bound < arr.length; bound++) {
// 循环内部要实现插入一次的过程
// 需要找到待排序区间的第一个元素, 放在哪里合适, 并且进行搬运赋值
// 已排序区间: [0, bound)
// 待排序区间: [bound, length)
// 此处的 v 就是待排序区间的第一个元素, 也就是要被插入的元素
int v = arr[bound];
int cur = bound - 1;
for (; cur >= 0; cur--) {
if (arr[cur] > v) {
// 如果 cur 位置的元素比待插入元素大
// 说明 v 要插入到 arr[cur] 的前面.
// 就需要把 arr[cur] 给往后搬运
arr[cur + 1] = arr[cur];
} else {
// 此时就相当于找到了要放置 v 的位置
break;
}
}
// 如果发现 v 比 arr[cur] 大,就把 v 放到 arr[cur] 的后面
// 后面的位置是 cur + 1
arr[cur + 1] = v;
}
}
二、希尔排序
//希尔排序(插入排序的改进版本)
// gap 为分组系数,gap 如果为 3,则分为 3 组,每组相邻元素的下标差值就是 3
// 再针对每个分组,分别进行插入排序
// 当 gap 较大时,分的组多,每组元素比较少,分组进行插入排序时速度比较快
// 当 gap 逐渐变小时,每组元素较多,但整体已经相对有序了,所以速度也很快
// 时间复杂度:O(N^2) 稳定性:不稳定
public static void shellSort(int[] arr) {
// 先指定 gap 序列,此处使用希尔序列(gap系数的序列)
// length/2,length/4,length/8,...,1
int gap = arr.length / 2;
while (gap >= 1) {
// 通过这个辅助方法, 进行分组插排
_shellSort(arr, gap);
gap = gap / 2;
}
}
public static void _shellSort(int[] arr, int gap) {
// 分组插排的时候, 同组中的相邻元素的下标差就是 gap
// 注意这里面取元素的顺序:
// 先取 0 组中的第 1 个元素, 尝试往前插入排序;
// 再取 1 组中的第 1 个元素, 尝试往前插入排序;
// 再取 2 组中的第 1 个元素, 尝试往前插入排序;
// ....
// 再取 0 组中的第 2 个元素, 尝试往前插入排序;
for (int bound = gap; bound < arr.length; bound++) {
// 循环内部就要完成比较搬运的过程.
// 比较搬运都是局限在当前组内的(不同组之间不能影响)
int v = arr[bound];
int cur = bound - gap;
for (; cur >= 0; cur -= gap) {
if (arr[cur] > v) {
// 需要进行搬运
// v 要插入到 arr[cur] 的前面
// 就得把 arr[cur] 往后搬运一个格子,给 v 腾个地方
arr[cur + gap] = arr[cur];
} else {
break;
}
}
// 如果发现 v 比 arr[cur] 大,就把 v 放到 arr[cur] 的后面
// 后面的位置不是 cur + 1,而是 cur + gap
arr[cur + gap] = v;
}
}
三、选择排序
//选择排序
//核心思路:基于打擂台的方式
//每次从待排序区间中,找出最小值,放到擂台上
//擂台就是待排序区间最开始的地方
//时间复杂度:O(N^2) 稳定性:不稳定
public static void selectSort(int[] arr) {
// [0, bound) 已排序区间
// [bound, length) 待排序区间
int bound = 0;
for (; bound < arr.length; bound++) {
// 里层循环就是进行具体的打擂台的过程
for (int cur = bound + 1; cur < arr.length; cur++) {
// 擂台就是 bound 位置的元素
// 取 cur 位置的元素和擂台进行比较
if (arr[cur] < arr[bound]) {
// 新元素胜出了,就需要交换两个元素的位置
// 让新的元素称为擂主
swap(arr, cur, bound);
}
}
}
}
四、冒泡排序
//冒泡排序
//时间复杂度:O(N^2) 稳定性:稳定
public static void bubbleSort(int[] arr) {
// [0, bound) 已排序区间
// [bound, length) 待排序区间
int bound = 0;
for (; bound < arr.length; bound++) {
for (int cur = arr.length - 1; cur > bound; cur--) {
if (arr[cur] < arr[cur - 1]) {
// 不符合升序,交换
swap(arr, cur, cur - 1);
}
}
}
}
五、堆排序
//堆排序(选择排序的优化)
//思路:
//1、建立一个大堆
//2、把堆顶元素(最大值)和数组最后一个元素交换,此时最大值就来到了数组的末尾,
// 并把最后一个元素从堆中删除
//3、前面的部分从 0 开始向下调整
//时间复杂度:O(N*logN) 稳定性:不稳定
public static void heapSort(int[] arr) {
//1.先进行建堆
createHeap(arr);
//2.循环进行交换堆顶元素和最后一个元素的过程,并且删除该元素,进行向下调整
int heapSize = arr.length;
for (int i = 0; i < heapSize; i++) {
swap(arr, 0, heapSize - 1);
//删除最后一个元素
heapSize--;
//从 0 这个位置进行向下调整
shiftDown(arr, heapSize, 0);
}
}
public static void shiftDown(int[] arr, int size, int index) {
int parent = index;
int child = 2 * parent + 1;//左节点
while (child < size) { //判断 child 是否存在
if (child + 1 < size && arr[child + 1] > arr[child]) {
child = child + 1;
}
// 经过上面的 if 之后, child 就指向了左右子树中的较大值.
// 比较 child 和 parent 的大小
if (arr[parent] < arr[child]) {
// 不符合大堆要求
swap(arr, parent, child);
} else {
break;
}
parent = child;
child = 2 * parent + 1;
}
}
public static void createHeap(int[] arr) {
//先找出最后一个非叶子节点(最后一个节点的父节点)
//从这个节点开始,依次进行向下调整
for (int i = (arr.length - 1 - 1) / 2; i >= 0; i--) {
shiftDown(arr, arr.length, i);
}
}
六、快速排序
//快速排序
//思路:先从数组中筛选出一个基准值(最后一个元素)
//将数组整理成,以基准值为分界,左边都小于基准值,右边都大于基准值
//创建两个下标 left,right
//让 left 往右走,找一个比基准值大的元素
//让 right 往左走,找一个比基准值小的元素
//交换 left 和 right 的值,继续执行上面两步
//直到 left 和 right 重合,将重合位置的元素和基准值交换
//再针对基准值左右两部分分别递归的执行上面步骤
//时间复杂度:O(N*logN) 稳定性:不稳定
public static void quickSort(int[] arr) {
// 使用一个辅助方法进行递归
// 辅助方法多了两个参数,用来表示针对数组上的哪个区间进行整理
_quickSort(arr, 0, arr.length - 1);
}
// [left, right]
public static void _quickSort(int[] arr, int left, int right) {
if (left >= right) {
// 如果区间为空或者区间只有一个元素, 不必排序
return;
}
// 使用 partition 方法来进行刚才描述的整理过程
// index 就是 left 和 right 重合的位置,整理之后的基准值的位置
int index = partition(arr, left, right);
// 递归处理左半区间
_quickSort(arr, left, index - 1);
// 递归处理右半区间
_quickSort(arr, index + 1, right);
}
public static int partition(int[] arr, int left, int right) {
// 选取基准值
int v = arr[right];
int i = left;
int j = right;
while (i < j) {
// 先从左往右找到一个比基准值大的元素
while (i < j && arr[i] <= v) {
i++;
}
// 再从右往左找到一个比基准值小的元素
while (i < j && arr[j] >= v) {
j--;
}
//交换 left 和 right 的值
swap(arr, i, j);
}
// 如果发现 i 和 j 重叠了,就需要把基准值元素和 i,j 重叠位置的元素交换
// 重合位置的元素比基准值大
swap(arr, i, right);
return i;
}
/*
快速排序的优化手段:
1、基准值可以采用三数取中的方式
2、如果数组很大,就会导致递归的深度很深,如果待处理的区间已经比较小了,
就不要继续递归了,可以采用直接插入排序
3、如果递归的深度已经比较深了,而待处理区间仍然很大,可以采用堆排序
*/
快速排序的非递归版本
//快速排序的非递归版本
public static void quickSortByLoop(int[] arr) {
// 1. 创建一个栈, 栈里面存放要去处理的区间
Stack<Integer> stack = new Stack<>();
// 2. 把第一组要去处理的区间入栈
stack.push(0);
stack.push(arr.length - 1);
// 3. 循环取栈顶元素的区间, 进行 partition 操作
while (!stack.isEmpty()) {
int end = stack.pop();
int beg = stack.pop();
if (beg >= end) {
// 只有一个元素/空区间, 不需要处理
continue;
}
// 4. 调用 partition 方法, 进行整理
int index = partition(arr, beg, end);
// 5. 把得到的子区间再入栈
// [beg, index - 1] [index + 1, end]
stack.push(index + 1);
stack.push(end);
stack.push(beg);
stack.push(index - 1);
}
}