Python:正宗的密度峰值聚类

本文深入探讨了密度峰值聚类算法的实现细节,包括距离矩阵的计算、密度和距离阈值的确定、聚类过程的展开等关键步骤。通过Python代码展示了如何从数据集中自动确定聚类中心,并对比了与其他聚类算法如K-means和谱聚类的效果。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.spatial.distance import pdist,squareform
from collections import OrderedDict
from itertools import combinations,product
from sklearn.cluster import SpectralClustering
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from sklearn.semi_supervised import LabelPropagation
from sklearn import metrics
from sklearn import datasets
from sklearn.metrics import mean_squared_error,accuracy_score,mean_absolute_error,f1_score

def getDistCut(distList,distPercent):
    return max(distList) * distPercent / 100

def getRho(n,distMatrix,distCut):
    rho = np.zeros(n,dtype=float)
    for i in range(n-1):
        for j in range(i+1,n):
            rho[i] = rho[i] + np.exp(-(distMatrix[i, j] / distCut) ** 2)
            rho[j] = rho[j] + np.exp(-(distMatrix[i, j] / distCut) ** 2)
    return rho
#------------密度峰值聚类------------------#
def DPCA(n,distMatrix,rho,blockNum):
    rhoOrdIndex = np.flipud(np.argsort(rho))
    delta = np.zeros(n,dtype=float)
    leader = np.ones(n,dtype=int) * int(-1)
    '''获取密度最大样本的Delta和Leader'''
    maxdist = 0
    for ele in range(n):
        if distMatrix[rhoOrdIndex[0],ele] > maxdist:
            maxdist = distMatrix[rhoOrdIndex[0],ele]
    delta[rhoOrdIndex[0]] = maxdist
    '''获取非密度最大样本的Delta和Leader'''
    for i in range(1,n):
        mindist = np.inf
        minindex = -1
        for j in range(i):
            if distMatrix[rhoOrdIndex[i],rhoOrdIndex[j]] < mindist:
                mindist = distMatrix[rhoOrdIndex[i],rhoOrdIndex[j]]
                minindex = rhoOrdIndex[j]
        delta[rhoOrdIndex[i]] = mindist
        leader[rhoOrdIndex[i]] = minindex
    gamma = delta * rho
    gammaOrdIdx = np.flipud(np.argsort(gamma))
    '''开始聚类'''
    clusterIdx = np.ones(n,dtype=int) * (-1)
    #------初始化聚类中心-------#
    for k in range(blockNum):
        clusterIdx[gammaOrdIdx[k]] = k
    #------对中心点以外样本进行聚类-----------#
    for i in range(n):
        if clusterIdx[rhoOrdIndex[i]] == -1:
            clusterIdx[rhoOrdIndex[i]] = clusterIdx[leader[rhoOrdIndex[i]]]
    #-----------使用字典存储类簇----------------#
    clusterSet = OrderedDict()
    for k in range(blockNum):
        clusterSet[k] = []
    for i in range(n):
        clusterSet[clusterIdx[i]].append(i)
    return clusterSet
    X, y = datasets.make_blobs(n_samples=500, n_features=2, centers=3, cluster_std=[1, 1, 1], random_state=104)

    n = len(X)
    Gamma = 0.5
    distPercent = 5
    distList = pdist(X,metric='euclidean')
    distMatrix = squareform(distList)
    distCut = getDistCut(distList,distPercent)
    rho = getRho(n,distMatrix,distCut)
    blockNum = 3
    # clusterSet = DPCA(n,distMatrix,rho,blockNum)
    # clusterSet = K_means(n,X,blockNum)
    clusterSet = SpecClust(n,X,Gamma,blockNum)

 

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeniuHe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值