Python复现An active learning-based SVM multi-class classification model

本文介绍如何使用Python构建一个基于主动学习的SVM多类别分类模型。通过CBA(Coactive Bayesian Active Learning)方法,该模型能够在数据标注有限的情况下,有效地提升分类性能。
摘要由CSDN通过智能技术生成

CBA: 

import xlwt
import numpy as np
import pandas as pd
from copy import deepcopy
from sklearn.metrics import accuracy_score, mean_absolute_error, f1_score, recall_score
from collections import OrderedDict
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import StratifiedKFold
from pathlib import Path
import matplotlib.pyplot as plt
from scipy.spatial.distance import pdist, squareform
from sklearn.svm import SVC

class CBA():
    def __init__(self, X_pool, y_pool, labeled, budget, X_test, y_test):
        self.X_pool = X_pool
        self.y_pool = y_pool.astype(np.int)
        self.X_test = X_test
        self.y_test = y_test.astype(np.int)
        self.labels = np.sort(np.unique(self.y_pool))
        self.nClass = len(self.labels)
        self.label
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeniuHe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值