- 博客(604)
- 收藏
- 关注
原创 Intellij Idea + Git 完美实战!
左侧为分支 lqh,右侧为分支 master,点击箭头可将分支 lqh 对当前文件的修改应用到分支 master。克隆后的文件位置给出的文件如果不存在会自动创建,如果存在,需要为空。切换为目标分支之后,对此分支进行pull操作,保证当前代码版本为最新。灰色文件:分支 master 有,而分支 lqh 没有。绿色文件:分支 lqh 有,而分支 master 没有。将需要修改的文件修改完毕后可将代码推送到远程分支B。蓝色文件:两个分支都有,但有一部分做了修改。删除分支后,需要 push 到远程仓库。
2024-08-27 10:08:23 1167
原创 B 树与 B+ 树
B树的出现是为了弥合不同的存储级别之间的访问速度上的巨大差异,实现高效的 I/O。平衡二叉树的查找效率是非常高的,并可以通过降低树的深度来提高查找的效率。但是当数据量非常大,树的存储的元素数量是有限的,这样会导致二叉查找树结构由于树的深度过大而造成磁盘I/O读写过于频繁,进而导致查询效率低下。另外数据量过大会导致内存空间不够容纳平衡二叉树所有结点的情况。B树是解决这个问题的很好的结构。
2024-07-27 17:41:02 806
原创 红黑树(RBTree)
知道 ALV 树是一种严格按照定义来实现的平衡二叉查找树,所以它查找的效率非常稳定,为 O(log n),由于其严格按照左右子树高度差不大于 1 的规则,插入和删除操作中需要大量且复杂的操作来保持 ALV 树的平衡(左旋和右旋),因此 ALV 树适用于大量查询,少量插入和删除的场景中那么假设现在有这样一种场景:大量查询,大量插入和删除,现在使用 ALV 树就不太合适了,因为 ALV 树大量的插入和删除会非常耗时间,那么我们是否可以降低 ALV 树对平衡性的要求从而达到快速的插入和删除呢?
2024-07-27 15:53:07 664
原创 二叉搜索树 | 二叉查找树 | 二叉排序树 (Binary Search Tree,简称 BST)
相同点二叉树结构:两者都是二叉树,但具有不同的结构和排序特性。基本操作:都支持插入、删除和查找操作。不同点排序特性BST:左子树小于根节点,右子树大于根节点。堆:最大堆中每个节点大于等于其子节点,最小堆中每个节点小于等于其子节点。结构特性BST:没有特别的结构约束,可能是平衡的也可能是不平衡的。堆:必须是完全二叉树。操作复杂度BST:查找、插入和删除的平均时间复杂度为 O(log n),但在最坏情况下为 O(n)。
2024-07-22 11:22:50 1107
原创 as long as、as soon as、as far as 的用法!
as long as 指的是如果 A 事件发生了,那么 B 事件就能够实现,是条件句的一种。as long as 作为连接词来连接两个句子,可以放在句首或句中,代换成也是一样的意思。这个用法还满常出现在生活中的,像是师长或家长对孩子说的话,还有对情人甜言蜜语,或是表示对未来事件的预测。Backstreet Boys 和 Justin Bieber 各有一首歌都叫做 ,推荐你去听听唷 🎶 ~
2024-06-25 16:16:45 1011
原创 特殊疑问词+动词不定式:名词从从句 | 独立问句
疑问代词 who, whom, what, which, whose;疑问副词 when, how, where 与不定式结合可形成短语,用于句中的主语、宾语或表语。(常接在 forget, find out, discuss, decide, tell, teach, know, learn, wonder, remember 等动词之后)。某些介词后面可接 “疑问词+不定式” 作宾语,这类介词常用的有 about, as, from, in, of, on, with 等。
2024-06-25 10:34:58 953
原创 Lesson 9 Flying cats 飞猫
but they猫总能引起人们的极大兴趣。它们可以对人友好,充满柔情。但是,它们又有自己神秘的生活方式。它们从不像狗和马一样变得那么顺从。结果是人们已经学会尊重猫的独立性。在它们的一生中,大多数猫都对人存有戒心。最使我们感兴趣的一件事情就是一种通俗的信念——猫有九条命。显然,这种说法里面包含着许多真实性。猫在跌落时能够大难不死是有事实作为依据的。
2024-06-12 19:21:00 860
原创 Lesson 8 A famous monastery 著名的修道院
the snowa. ⑦圣伯纳德大山口连接着瑞士与意大利,海拔2,473O米,是欧洲最高的山口。11世纪建造的著名的圣伯纳德修道院位于离山口1英里远的地方。几百年来,圣伯纳德修道院驯养狗拯救了许多翻越这道山口的旅游者的生命。那些最先从亚洲引进的狗,待人友好,早在罗马时代就给人当看门狗了。如今由于山里开挖了隧道,翻越山口已不那么危险了。但每年还要派狗到雪山地里去帮助那些遇到困难的旅游者,尽管修通了隧道,但仍有一些人想冒险徒步跨越圣伯纳德山口。St.Bernard /'seint-bə’na:d/圣伯纳德。
2024-06-12 18:30:45 784
原创 Lesson 7 Mutilated ladies 残钞鉴别组
①money!这种事情在你身上出现过吗?你有没有把裤子塞洗衣机,然后又想在裤子的后兜有一张大面值的纸币?当你把裤子抢救出来时,你有没有发现那张纸币已经变得比白纸还白?当英国人犯这种错误时,他们不必感到绝望(而许多国家的人都有这种绝望的感觉)。对英国人来说,值得庆幸的是英国银行有一个残钞鉴别组,负责理那些把钱塞进机器或塞给狗的人提出的索赔要求。看起来,狗很喜欢咀嚼钱币。
2024-06-12 11:25:54 650
原创 2009,TEVC,Order of Nonlinearity as a Complexity Measure for Models Generated by SR via Pareto GP
设一个树结构表示一个在一组变量。
2024-06-11 19:23:56 704
原创 Lesson 6 Smash-and-grab 砸橱窗抢劫
一个窃贼被一尊很重的雕像击中,但由于他忙着抢钻石首饰,竟连疼痛都顾不上了。这场抢劫只持续了3分钟,因为窃贼争先恐后地爬上轿车,以惊人的速度开跑了。就在轿车离开的时候,泰勒先生从店里冲了出来,跟在车后追赶,一边还往车上扔烟灰缸、花瓶。宁静突然被打破,一辆大轿车亮着前灯,响着喇叭,呼啸着冲进了拱廊街,在珠宝店门口停了下来。他与店员动手向窗外投掷家具,椅子,桌子飞落在拱廊街上。所以,使用 “background of black velvet” 是为了确保表达清晰、突显展示效果、增强语言美感以及避免歧义。
2024-06-09 09:20:35 709
原创 Lesson 5 The facts 确切数字
严厉的 It was the most extreme example of cruelty to animals I had ever seen. 这是我见过的最严重的虐待动物的事例。”编辑立即给那位记者发去传真,要求他核实一下台阶的确切数字和围墙的高度。记者立即出发去核实这些重要的事实,但过了好长时间不见他把数字寄来,在此期间,编辑等得不耐烦了,因为杂志马上要付印。那个可怜的记者不仅被捕了,而且还被送进了监狱。在传真中他告诉编辑,就在他数通向15英尺高的总统府围墙的1,084级台阶时,被抓了起来。
2024-05-31 19:22:09 960
原创 Lesson 4 The double life of Alfred Bloggs艾尔弗雷德 · 布洛格斯的双重生活
Lesson 4 The double life of Alfred Bloggs
2024-05-31 17:33:55 1233
原创 Lesson 3 An unknown goddess 无名女神
其中有一尊雕像,她的躯体是在公元前15世纪的历史文物中发现的,而她那身异处的脑袋却碰巧是在公元前5世纪的文物中找到的。她的脑袋一定是在古希腊罗马时代就为人所发现,并受到精心的保护。不久之前,在爱琴海的基亚岛上,考古工作者有一项有趣的发现。这座古城肯定一度很繁荣,因为它曾享有高度的文明,房子一般有3层楼高,用石块修建。turn out 为短语动词,当表示“结果,原来(情况是)”的意思时,可接形容词、副词、名词、不定式(常用 to be)、从句(用先行词 it 作主语),间或接介词短语等其他结构。
2024-05-28 09:52:50 797
原创 Lesson 2 Thirteen equals one 十三等于一
一天夜里,我们的牧师突然被惊醒了,大钟又在“打点”报时了!他一看表,才1点钟,可是那钟一边敲了13下才停。教堂的钟很大,以前不分昼夜打点报时,但很多年前遭到毁坏,从此便无声无息了。“问题就在这里,牧师,”比尔回答说。“不错,钟能报时了,但是,恐怕每到1点钟,它总要敲13下,对此我已无能为力了。”牧师说,“也许同时你把村里所有的人都吵醒了。不过,钟又能报时了,我还是很高兴的。“大家慢慢就习惯了,比尔,”牧师说。“我想把这口钟修好,”比尔回答说。“好几个星期了,我天天夜里到钟楼上来。嗯,我是想让你大吃一惊。
2024-05-28 09:03:57 940
原创 Lesson 1 A puma at large 逃遁的美洲狮
那里的一位妇女在采摘黑莓时的看见“一只大猫”,离她仅5码远,她刚看见它,它就立刻逃走了。专家证实,美洲狮非被逼得走投无路,是决不会伤人的。事实上搜寻工作很困难,因为常常是早晨在甲地发现那只美洲狮,晚上却在20英里外的乙地发现它的踪迹。无论它走哪儿,一路上总会留下一串死鹿及死兔子之类的小动物,在许多地方看见爪印,灌木丛中发现了粘在上面的美洲狮毛。美洲狮是一种体形似猫的大动物,产于美洲。可是,随着证据越来越多,动物园的专家们感到有必要进行一番调查,因为凡是声称见到过美洲狮的人们所描述的情况竟是出奇地相似。
2024-05-28 08:33:06 1024
原创 Pycharm + Git 操作合集
GitcloneGitclonePycharmNew Window到这里就成功啦,下面是讲解如何提前登录好 Gitee 与 Github 账号。
2024-05-27 21:03:10 3807
原创 图论知识目录
图论知识汇总——原创作者:青年有志🎉 博主相信: 有足够的积累,并且一直在路上,就有无限的可能!!!👨🎓个人主页: 青年有志的博客💯 Gitee 源码地址:序号1第一章 图的基本概念详细介绍2第二章 树详细介绍3第三章 图的连通性详细介绍4第三章 图的连通性详细介绍5第四章 欧拉图与哈密尔顿图详细介绍6第五章 匹配与因子分解详细介绍7第六章 平面图详细介绍8第七章 图的着色详细介绍9第八
2024-05-25 14:57:54 1230
原创 图论作业(一)
(1)至少有 n-1 条边。(2)如果边数大于 n-1,则至少有一条闭迹。(3)如恰有 n-1 条边,则至少有一个奇度点。若对∀v∈VG, 有dv≥22m∑dv≥2n⇒m≥nn−1;若G中有1度顶点,对顶点数n作数学归纳。当 n=2 时,G显然至少有一条边,结论成立。设当n = k时,结论成立,即至少有 k - 1条边当 n=k+1 时,设去掉任一一个一度顶点vdV−1,则剩下的图G−v满足 n = k 的情况,是k。
2024-05-25 14:40:21 421
原创 【图论及其运用 — 电子科技大学】复习课件
(一)、重点概念1、图、简单图、图的同构与自同构、度序列与图序列、补图与自补图、两个图的联图、两个图的积图、偶图;(1) 图:一个图是一个序偶<V,E><V,E><V,E>,记为G=(V,E)G=(V,E)G=(V,E),其中:1) VVV是一个有限的非空集合,称为顶点集合,其元素称为顶点或点。用∣V∣|V|∣V∣表示顶点数;2) EEE是由VVV中的点组成的无序对构成的集合,称为边集,其元素称为边,且同一点对在EEE中可以重复出现多次。用∣E∣|E|∣
2024-05-25 14:36:49 429
原创 图论特殊结论(二)
非平凡树可以 1-因子分解 ❌,可以 1-因子分解的图一定是偶数阶数的正则图。D. 若图 G 是 2k 正则连通图,则 可以分解为 k 个二因子的并。哈密尔顿图一定没有割点 ❌ 存在自环的哈密尔顿图有割点;回路是边不重圈的并;当n为奇数时,Kn有(n-1)/2条没有公共边的哈密尔顿圈。图的割点也是子图的割点 ❌ 八字形的图去掉一个块就没有割点。图 G 的一个 2-因子实际上就是它的一个哈密尔顿圈 ❌。可 1-因子分解的 3 正则图一定是哈密尔顿图 ❌。(1)若G是E图,则L(G) 既是E图又是H图。
2024-05-25 14:34:49 941
原创 图论特殊结论(一)
(1) 一个图是偶图当且当它不包含奇圈.(2)n阶完全偶图Kn1n2的边数mn1n2,且m≤⌊n2/4⌋(3) 设 G 为具有二分类 (X, Y ) 的偶图,则 G 包含饱和 X 的每个顶点的匹配当且仅当∣NS∣≥∣S∣,对所有S⊆X成立.(4) 若 G 是 k 正则偶图 (k > 0),则 G 有完美匹配.(5) 在偶图中,最大匹配中的边数等于最小覆盖中的点数.(6) k 正则偶图 (k > 0) 是 1-可因子化的.。
2024-05-25 14:32:10 968
原创 【图论及其运用 — 电子科技大学】(七)第七章 图的着色
一、图的边着色(一)、相关概念定义1 给定图 G=(V,E)G=(V,E)G=(V,E),称映射 π:E→{1,2,3,...,k}\pi : E \to \{1, 2, 3, ..., k\}π:E→{1,2,3,...,k} 为 GGG 的一个 kkk 边着色,简称边着色,称 {1,2,3,...,k}\{1, 2, 3, ..., k\}{1,2,3,...,k} 为色集。若 π\piπ 为 GGG 的边着色且 ∀e′,e′′∈E\forall e{'}, e{''} \in E∀e′,e′′∈
2024-05-24 20:26:09 562
原创 【图论及其运用 — 电子科技大学】(六)第六章 平面图
定义4给定平面图GGGGGG的对偶图G∗G^*G∗如下构造:(1) 在GGG的每个面fif_ifi内取一个点vi∗v_i^*vi∗作为G∗G^*G∗的一个顶点;(2) 对GGG的一条边eee, 若eee是面fif_ifi与fjf_jfj的公共边,则连接vi∗v_i^*vi∗与vj∗v_j^*vj∗,得G∗G^*G∗的边vi∗vj∗v_i^*v_j^*vi∗。
2024-05-24 20:23:59 369
原创 【图论及其运用 — 电子科技大学】(五)第五章 匹配与因子分解
一、偶图的匹配问题偶图回顾kkk 正则偶图:两个顶点子集包含顶点个数相等对称差运算:保留不同的,去掉相同的(一)、图的匹配与贝尔热定理1、图的匹配相关概念(1)、匹配 MMM — 如果 MMM 是图 GGG 的边子集(不含环),且 MMM 中的任意两条边没有共同顶点(即不相邻),则称 MMM 是 GGG 的一个匹配或对集或边独立集。如果 GGG 中顶点 vvv 是 GGG 的匹配 MMM 中某条边的端点,称它为 MMM 饱和点,否则为 MMM 非饱和点。(意思就是: GGG 中顶点 v
2024-05-24 20:22:15 299
原创 【图论及其运用 — 电子科技大学】(四)第四章 欧拉图与哈密尔顿图(Euler 图与 Hamilton 图)
一、欧拉图与中国邮路问题(一)、欧拉图及其性质1、欧拉图的概念(1)、问题背景—欧拉与哥尼斯堡七桥问题注:一笔画----中国古老的民间游戏要求:对于一个图G, 笔不离纸, 一笔画成.(2)、欧拉图概念经过连通图 GGG 的每条边的迹被称为 Euler 迹(欧拉迹)(欧拉迹不要求回到原点,经过所有的点与边)定义1 对于连通图GGG,如果GGG中存在经过每条边的 闭迹(即 Euler 闭迹),则称GGG为欧拉图,简称GGG为EEE图。欧拉闭迹又称为g游,或欧拉回路。(欧拉图是含有一条欧拉闭迹,
2024-05-24 20:20:13 807
原创 【图论及其运用 — 电子科技大学】(三)第三章 图的连通性
一、图的连通性刻画(⼀)、割边及其性质定义1 边eee为图GGG的⼀条割边,如果 ω(G−e)>ω(G)ω(G − e) > ω(G)ω(G−e)>ω(G)。(ω(G)ω(G)ω(G) 表示图 GGG 连通分支的数量,G−eG − eG−e 表示只去掉 eee 这条边,边两边的点不动)e2e_2e2 为割边,是因为去掉 e2e_2e2 这条边后只剩下右边一个点,与其他部分不连通注: 割边⼜称为图的“桥”。图的割边有如下性质:定理1 边 eee 是图GGG的割边当且
2024-05-24 20:17:05 491
原创 【图论及其运用 — 电子科技大学】(二)第二章 树
一、树的概念与性质(一)、树的概念与应用1、树的概念定义1 不含圈的图称为无圈图,树是连通的无圈图。(T3T_3T3 是平凡图,即度为 0)定义2 称无圈图GGG为森林。注:(1) 树与森林都是单图; (单图即简单图,无重边无环的图)(2) 树与森林都是偶图。2、树的应用树是图论中应用最为广泛的一类图。在理论上,由于树的简单结构,常常是图论理论研究的“试验田”。在实际问题中,许多实际问题的图论模型就是树。(二)、树的性质定理1 每棵非平凡树至少有两片树叶
2024-05-24 20:16:33 592
原创 【图论及其运用 — 电子科技大学】(一)第一章 图的基本概念
一、图的概念与图论模型(一)、图的定义与图论模型一个图是一个序偶 <V,E><V,E><V,E>,记为 G=(V,E)G=(V,E)G=(V,E), 其中:(vertex,edge)(1) VVV 是一个有限的非空集合,称为顶点集合, 其元素称为顶点或点。用 ∣V∣|V|∣V∣ 表示顶点数;(2) EEE 是由 VVV 中的点组成的无序对构成的集合,称为边集,其元素称为边,且同一点对在 EEE 中可以重复出现多次。用 ∣E∣|E|∣E∣ 表示边数。注: 图
2024-05-24 20:16:00 528
原创 图论定理汇总(一)
第一章 图的基本概念基本概念名词概念有限图顶点集和边集都有限的图称为有限图;平凡图只有一个顶点而无边的图称为平凡图;其他所有的图都称为非平凡图空图边集为空的图称为空图;n阶图顶点数为n的图称为n阶图;(n, m) 图顶点数为n,边数为m的图称为(n, m) 图;边的重数连接两个相同顶点的边的条数称为边的重数;重数大于1的边称为重边;环端点重合为一点的边称为环;简单图无环无重边的图称为简单图;其余的图称为复合图;顶点u与v
2024-05-24 16:37:10 610
原创 图论定理汇总(二)
第六章 平面图(一)、平面图的概念定义1 如果能把图GGG画在平面上,使得除顶点外,边与边之间没有交叉,称GGG可嵌入平面,或称GGG是可平面图。可平面图GGG的边不交叉的一种画法,称为GGG的一种平面嵌入,GGG的平面嵌入表示的图称为平面图。由定义,图 GGG 的平面嵌入只是 GGG 的一种方式,它和 GGG 实际上是同一个图(二)、平面图性质定义2 (1) 一个平面图GGG把平面分成若干连通片,这些连通片称为GGG的区域,或GGG的一个面。GGG的面组成的集合用ϕ\phiϕ表示。(2) 面
2024-05-24 16:28:38 540
原创 Java枚举(enum)
除了 EnumSet,还有 EnumMap,是一个专门针对枚举类型的 Map 接口的实现类,它可以将枚举常量作为键来使用。由于枚举是 final 的,所以可以确保在 Java 虚拟机中仅有一个常量对象,基于这个原因,我们可以使用“==”运算符来比较两个枚举是否相等,参照 isBasketballPlayer() 方法。“如果枚举中需要包含更多信息的话,可以为其添加一些字段,比如下面示例中的 name,此时需要为枚举添加一个带参的构造方法,这样就可以在定义枚举时添加对应的名称了。
2024-05-04 21:11:45 1081
原创 适配器模式
适配器模式是一种,它允许将不兼容的对象转换成可兼容的接口。主要目的是解决在不改变现有代码的情况下,使不兼容的接口之间能够正常工作,通过创建一个中间转换的适配器来将一个对象转换成我们所需要的接口。适配器就是一种适配中间件,它存在于不匹配的二者之间,用于连接二者。简单理解就是转换器、转接口的存在。举个真实的例子,读卡器是作为内存卡和笔记本之间的适配器。您将内存卡插入读卡器,再将读卡器插入笔记本,这样就可以通过笔记本来读取内存卡。
2024-04-24 17:09:43 1020
原创 Lesson 56 Faster than sound! 比声音还快!
旧式汽车的比赛每年举行一次。去年有很多汽车参加了这项比赛。最漂亮的汽车之一是罗尔斯-罗伊斯生产的银鬼汽车,而最不寻常的一辆则要属只有3只轮子的奔驰牌汽车了。该车造于1885年,是参赛车中最老的一辆。在好一阵喧闹的爆炸声之后,比赛开始了。很多汽车在途中就抛了锚,而有些驾驶员花在汽车底下的时间比坐在汽车里面的时间还长。获胜的那辆车达到了时速40英里——远远超过任何对手。它在接近终点时,冲下了山坡,驾驶员费了好大劲才把车停下来。它虽然与现代汽车比赛大不相同,但激动人心的程度并不亚于现代汽车大赛。
2024-04-23 08:13:19 334
原创 Lesson 57 Can I help you,madam?你要买什么,夫人?
她虽然犹豫了片刻,但终于还是走进了商店,要求把陈列在橱窗里的一件衣服拿给她看。接待她的售货员不喜欢她的那副打扮,轻蔑地看了她一眼后,便告诉她那件衣服已经卖出去了。这位妇女怒气冲冲地走出了商店,决定第二天教训一下那个售货员。第二天上午,她又来到这家商店,穿了一件裘皮大衣,一只手拎着一只手提包,另一只手拿着一把长柄伞。找到那个无礼的售货员后,她还要看昨天的那件衣服。那个售货员没有认出她是谁,这一回接待她的态度非常殷勤。她开心地迫使那位售货员把橱窗里几乎所有的东西都拿了出来,最后才买下了她最先要看的那一件。
2024-04-23 08:11:54 396
原创 Lesson 58 A blessing in disguise?是因祸得福吗?
Lesson 58 A blessing in disguise?是因祸得福吗?
2024-04-19 08:56:49 178
Spring6-课件与资料
2024-02-23
Maven-尚硅谷课件与代码
2024-02-21
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人