IDC洞察 | 159.2 ZB 数据下,中国数据智能市场的核心技术趋势和发展方向

2024 年,生成式 AI 正引领数据智能市场迈入新的发展阶段。IDC 预测,中国数据规模将在 2024 年达到 38.6ZB,并在未来五年保持 25.7% 的高速增长。面对海量数据带来的挑战和机遇,企业需要积极拥抱新技术,构建更加灵活、高效和智能的数据管理体系。数据底座的稳固性以及高效的数据工程管理将成为企业能否在数据智能时代脱颖而出的关键因素。

根据IDC的预测,全球在2024年将生成159.2ZB的数据,其中中国占24.2%,预计生成38.6ZB数据。未来五年,中国的数据量年复合增长率(CAGR)将达到25.7%,这使得中国在全球数据生成中仅次于北美地区。数据的快速增长与流动性提升,使得企业在数据管理方面面临前所未有的挑战。

当前,企业在面对海量数据时,传统的数据管理方式已经难以适应新的需求。生成式人工智能(GenAI)被视为应对这些挑战的重要解决方案,它能够促进多种数据架构的结合,涵盖自动化流动、增强检索、数据自动规划、ETL(提取、转换、加载)以及全链路管理等。这些能力的集成,能够有效提高数据处理效率,减轻企业在数据管理上的负担。

生成式AI的市场机遇

生成式AI的兴起为数据服务开辟了新的机遇。它为包括合成数据、向量数据库、更快的检索与查询、生成式商业智能(GBI)、智能决策及知识库等在内的数据服务提供了新的可能性。智能问答、数字人和元数据补全等高容错率场景正在率先落地,预计在下半年,受GenAI需求推动的项目将显著增长,企业将更多地选择整体解决方案进行外部采购,或根据实际项目需求进行混合开发。

在市场上,越来越多的企业意识到,生成式AI不仅能提高数据处理的效率,还能在决策支持、客户服务、市场分析等多个领域发挥重要作用。因此,企业在制定数据战略时,需要考虑如何有效利用生成式AI技术,以提升自身在市场中的竞争力。

数据智能核心技术趋势

当前市场的核心技术趋势可以归纳为以下几个方面:

  • Graph AI:随着非结构化数据的快速增长,如何管理和挖掘这些数据背后的价值变得愈发重要。Graph AI技术能够通过图结构展示数据之间的关系,从而实现更准确的查询和分析。

  • 湖仓一体:湖仓一体是整合数据湖和数据仓库的一种新模式,能够提高数据的管理效率,满足企业对大规模数据处理的需求。

  • 数据编织(Data Fabric):强调数据的连接与共享,支持多维度分析和实时洞察,推动企业在数据管理上的灵活性与开放性。

  • 检索增强生成(RAG):结合向量数据库与传统数据库技术,提升数据检索和生成的能力,进而提高企业的信息处理效率。

  • 低代码/无代码(LCNC):通过预置模板与组件,降低开发门槛,使企业能够快速实现数字化转型,满足多样化的业务需求。

  • 数据要素化:推动数据的产品化与流通,强调数据作为资产的价值释放,帮助企业更好地利用数据创造商业价值。

图片

图1:IDC 数据智能核心技术趋势及代表厂商 V2.0

数据智能关键发展方向

随着数据智能市场的不断演进和生成式AI技术的快速发展,企业在数据管理与应用方面面临着新的机遇与挑战。以下是未来几年行业发展的一些关键方向:

数据驱动的决策制定

企业将越来越依赖数据来驱动决策制定。通过利用数据分析和生成式AI,企业能够从海量数据中提取关键洞察,支持高效的决策过程。这一

转变将促使企业在战略规划、市场预测、产品开发等方面的决策更加科学化和精准化。

自动化与智能化的提升

数据智能的未来将以自动化和智能化为核心。企业通过引入AI和机器学习技术,实现数据处理、分析与报告的自动化,降低人工干预的需求。

这种转变不仅提高了效率,还减少了人为错误,提升了数据质量。

数据安全与隐私保护的强化

随着数据量的激增,数据安全和隐私保护将成为企业必须重点关注的领域。企业需要建立健全的数据安全管理体系,采用先进的加密、隐私计

算和区块链技术来保护数据的安全性和完整性。同时,遵循相关法律法规,确保数据的合规使用,建立用户信任。

多云和混合云架构的广泛应用

越来越多的企业将采用多云和混合云架构,以提高数据存储和处理的灵活性。这种架构能够帮助企业在不同的云平台之间自由流动数据,实现

更高的资源利用率和成本效益。此外,多云策略还将增强企业的灾备能力和业务连续性。

人工智能与业务流程的深度融合

生成式AI将与业务流程深度融合,推动企业在产品设计、客户服务、市场营销等方面的创新。例如,企业可以利用生成式AI来自动生成个性化的

营销内容,提高客户转化率;同时,智能客服系统也将依托AI技术提升客户体验,降低服务成本。

数据文化的建立

企业需要建立以数据为核心的文化,鼓励员工在日常工作中利用数据进行决策和创新。这一文化的建立不仅依赖于技术的引入,还需要高层领

导的支持和全员的参与。通过培训和知识共享,企业可以提升员工的数据素养,增强数据驱动决策的能力。

行业应用的定制化

随着数据智能技术的不断成熟,各个行业的企业将更加注重根据自身需求进行定制化应用。行业特定的数据解决方案将成为市场的主流,企业

能够通过个性化的数据管理与分析平台,满足特定业务场景的需求,提高运营效率。

生态系统的构建

企业将更加重视与其他企业、技术供应商及研究机构的合作,构建开放的生态系统。通过合作创新,企业能够共享资源、技术和市场机会,实现

共赢。这一生态系统的构建将为企业在快速变化的市场中提供更强的竞争力。

企业数据之道

企业在面对日益复杂的数据环境时,建议更新其技术架构,以提高数据管理的效率和灵活性。首先,企业应致力于多模态数据管理,以有效管理结构化和非结构化数据,从而适应多样化的数据类型。同时,随着数据量的不断增加,扩展数据存储节点变得尤为重要,以确保数据处理能力能够满足业务需求。

此外,构建知识图谱与知识库将有助于信息的存储、管理和检索,提升企业的知识管理能力。利用向量数据库技术,可以显著提高数据检索和处理的效率,满足对快速数据访问的需求。与此同时,确保数据在不同存储和平台间自由流动时保持一致性,以避免数据冗余和不一致,也是企业更新技术架构时必须重视的核心环节。通过这些架构的更新,企业将增强市场竞争力。

图片

图2:逻辑数据管理的功能图

随着数据量的爆炸式增长,传统的数据治理方式已经无法满足企业的需求,因此,企业需要加强数据治理与资产管理。首先,企业应识别出对业务具有重要价值的数据,并优先进行管理和分析,以实现数据的最大利用。同时,通过分析数据之间的关系,可以发现潜在的商业机会,推动业务创新。加强跨部门协作,在数据治理过程中确保数据在各个业务环节中的有效流通,也是提升数据治理能力的关键。此外,企业需要建立健全的数据资产管理体系,对数据进行确权、评估和管理,推动数据的资产化进程。最后,确保在数据使用过程中遵循相关法律法规,以保护用户隐私和数据安全,也是企业不可忽视的责任。通过这些措施,企业能够更好地利用数据创造价值,实现可持续发展。

在技术供应商纷纷以低价推销内容生成、知识库和代码生成等产品的背景下,企业应选择更易落地的应用场景。首先,明确业务目标至关重要,确保所选方案能够切实解决实际问题,从而为企业带来实际收益。企业还应开展概念验证(POC)测试,以验证不同技术方案的可行性,降低投资风险。在选择技术供应商时,企业应综合考虑其技术能力、行业经验和市场口碑,以确保选择合适的合作伙伴。同时,关注用户体验也是关键,在应用场景的设计与实施中,确保最终用户能够顺畅使用相关工具和服务。实施后,企业应定期评估应用场景的效果,及时进行优化与迭代,以适应不断变化的市场需求。通过优化应用场景选择,企业不仅能够提升数据智能化水平,还能在市场竞争中占据优势地位。

免责条款:我们已尽力准确引用和呈现IDC报告中的信息,但由于内容编排和分析可能与原报告存在差异,因此本报告的观点和结论仅供参考,不构成商业或法律建议。对于引用内容的准确性、完整性或适用性,IDC及其关联公司不承担任何责任。本报告发布方亦不对因使用本报告内容导致的任何损失或损害承担责任。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值