2025 年即将到来!我们对新的一年有何预测?以下是一些关于 2025 年将会发生的事情的想法和思考。我们会看到哪些趋势增强?哪些趋势会消失?哪些主题将对 Denodo 客户和更广泛的宏观技术领域至关重要?我们认为哪些垂直、水平和文化趋势会影响我们的行业、人们开展业务的方式以及人们消费数据的方式?
Ángel Viña 数据虚拟化之父 Denodo 创始人展望
逻辑/联邦数据架构兴起,混合多云成新常态,AI 驱动数据管理扩展,数据管理支持 GenAI 模型,去中心化数据治理转型,成本优化和可持续性成焦点。
预测一:逻辑/联邦数据架构的兴起
数据网格和数据编织的增长:公司正在从单体数据湖转向分布式数据架构,如数据网格和数据编织,它们将数据视为产品并按域组织数据。这些方法支持去中心化、联邦治理,在这种治理中,数据所有权分布在各个团队中,从而提高了可扩展性和自主性。
对统一数据生态系统互操作性的需求增加:逻辑数据架构将推动对跨不同数据源(包括云、本地和混合环境)的无缝互操作性的需求。支持跨分布式系统的数据系统语义统一和查询计算的工具和平台将获得显著的吸引力。
预测二:混合和多云数据管理成为新常态
用于数据主权的混合云架构:数据隐私法规和对数据主权的渴望将推动组织采用混合架构,其中敏感数据保留在本地或私有云中,而不太关键的数据存储在公共云中。这种方法可在利用公共云服务可扩展性的同时,实现法规遵从性。
跨云提供商的统一数据管理:随着越来越多的公司使用多云,对跨提供商的统一数据管理工具的需求将不断增长。能够跨 AWS、Azure、GCP 和其他平台提供单一视图和治理框架的解决方案将受到高度重视。
预测三:更加关注数据产品生命周期管理
数据产品是数据民主化的关键推动因素:数据产品将原始数据转换为增值服务,为最终用户提供可操作的洞察力,以实现业务目标。不同的交付模式和自助服务界面将使所有组织中的新成员能够使用数据产品,从而显著增加数据使用量。
数据产品生命周期变得更加复杂:数据产品由具有不同技能和职责的不同角色管理,通常以去中心化的方式进行管理。数据管理平台将支持数据产品的整个生命周期,从创建(设计、实施、部署)到发现、使用和监控。
预测四:用于数据管理的 AI:AI 驱动的数据管理的扩展
自动数据编目和发现:AI 将在数据发现、分类和编目中发挥更大的作用,帮助组织自动进行数据组织和标记。AI 驱动的数据目录将提供有关数据沿袭、数据质量和使用模式的实时洞察。
智能数据执行:数据管理平台将通过预测使用模式、将查询映射到正确的数据执行引擎以及自动调整数据工作负载以最大限度地降低成本和提高性能,来支持基于 AI 的数据查询执行优化。
预测五:用于 AI 的数据管理:支持 GenAI 模型的丰富
RAG 增强:除了对 LLM 进行微调以供企业使用之外,GenAI 模型在最初训练时使用的数据上停留在某个时间点。它们不了解企业数据或上下文,也无法访问实时信息。数据管理平台将不断发展,以提供和自动化对 LLM 的 RAG 增强,并通过企业数据将 GenAI 应用程序的行为场景化。
预测六:继续向去中心化数据治理转变
面向域的数据治理:去中心化数据架构将导致面向域的治理,其中某些数据治理策略是在域级别而不是仅在中央进行管理的。这使得最接近数据的团队能够对其质量和合规性负责。
监管重点日益关注数据透明度:监管要求越来越关注数据透明度,尤其是在 AI 驱动的决策环境中。数据治理架构将包括用于跟踪数据来源和确保可解释性的框架,以遵守新的数据和 AI 法规。
数据可观测性作为核心功能:数据可观测性使组织能够监控数据健康状况、沿袭和使用情况,这将成为一项标准功能。可观测性工具将提供有关数据管道、数据新鲜度和沿袭的洞察,确保用于分析和决策的数据的可靠性。
预测七:关注超个性化、大规模隐私和数据安全
超个性化功能:所有数据都将提高为每个客户定制数据使用体验的需求。数据管理