数据虚拟化技术逐渐成为企业数据管理的重要工具。它通过在异构数据源之上提供统一的抽象层,简化数据访问和整合的复杂性,为企业的运营(事务性)和信息(BI 报告/分析)应用提供高效支持。数据虚拟化不仅可以打破传统数据孤岛,还能灵活适配业务需求,为企业带来更加敏捷的数据使用方式。
在企业级部署中,数据虚拟化通常作为一个共同的数据层,支持具有不同服务质量(QoS)要求的多种业务应用。其服务质量的保障涉及数据量、并发性、延迟等多个关键方面,这对企业实现高效运营和准确决策至关重要。2025年,数据虚拟化技术在服务质量保障上实现了显著进展,其应用场景和策略也更加丰富和成熟。
一、工作负载类型与QoS需求
在数据虚拟化技术中,工作负载通常分为以下两大类型,每种类型对服务质量的需求不同:
1. 信息型工作负载
信息型工作负载主要应用于BI报告和数据分析场景。在这些应用中,数据虚拟化通常充当语义层,为用户提供一致的数据模型。这类工作负载的特点包括:
- 数据量大:通常需要对海量数据进行汇总和分析。
- 并发水平低到中等:典型用户为分析师或BI工具,每次查询涉及少量用户。
- 低延迟需求较低:由于用户不会在线等待实时结果,延迟对整体体验影响不大。