第四节-矩阵的LU分解

本文详细介绍了矩阵的LU分解,通过实例解析了矩阵消元过程,阐述了为何选择L矩阵而非消元矩阵E,并分析了高斯消元法的时间复杂度,指出总运算量约为O(3/1n^3)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵的LU分解

矩阵消元

前面章节我们讲解了矩阵 A A A可以通过消元矩阵 E E E得到 U U U,即 E A = U EA=U EA=U,本节的目标是以消元公式 A = L U A=LU A=LU来审视高斯消元法。
先从简单的 2 × 2 2×2 2×2矩阵开始,消元矩阵 E 21 A = U E_{21} A = U E21A=U如下公式:
[ 1 0 − 4 1 ] × [ 2 1 8 7 ] = [ 2 1 0 3 ] \left[ \begin{array} {cc} 1&0\\ -4&1\\ \end{array} \right] × \left[ \begin{array} {cc} 2&1\\ 8&7\\ \end{array} \right] = \left[ \begin{array} {cc} 2&1\\ 0&3\\ \end{array} \right] [1401]×[2817]=[2013]

这里我们想得到矩阵 L L L使得 A = L U A=LU A=LU等式成立:
[ 2 1 8 7 ] × [ ? ? ? ? ] = [ 2 1 0 3 ] \left[ \begin{array} {cc} 2&1\\ 8&7\\ \end{array} \right] × \left[ \begin{array} {cc} ?&?\\ ?&?\\ \end{array} \right] = \left[ \begin{array} {cc} 2&1\\ 0&3\\ \end{array} \right] [2817]×[????]=[2013]
可以知道这里所求 L L L即为 E 21 − 1 E_{21}^{-1} E211 E 21 A = U E_{21} A = U E21A=U两边同乘以 E 21 − 1 E_{21}^{-1} E21

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值