矩阵的LU分解
矩阵消元
前面章节我们讲解了矩阵 A A A可以通过消元矩阵 E E E得到 U U U,即 E A = U EA=U EA=U,本节的目标是以消元公式 A = L U A=LU A=LU来审视高斯消元法。
先从简单的 2 × 2 2×2 2×2矩阵开始,消元矩阵 E 21 A = U E_{21} A = U E21A=U如下公式:
[ 1 0 − 4 1 ] × [ 2 1 8 7 ] = [ 2 1 0 3 ] \left[ \begin{array} {cc} 1&0\\ -4&1\\ \end{array} \right] × \left[ \begin{array} {cc} 2&1\\ 8&7\\ \end{array} \right] = \left[ \begin{array} {cc} 2&1\\ 0&3\\ \end{array} \right] [1−401]×[2817]=[2013]
这里我们想得到矩阵 L L L使得 A = L U A=LU A=LU等式成立:
[ 2 1 8 7 ] × [ ? ? ? ? ] = [ 2 1 0 3 ] \left[ \begin{array} {cc} 2&1\\ 8&7\\ \end{array} \right] × \left[ \begin{array} {cc} ?&?\\ ?&?\\ \end{array} \right] = \left[ \begin{array} {cc} 2&1\\ 0&3\\ \end{array} \right] [2817]×[????]=[2013]
可以知道这里所求 L L L即为 E 21 − 1 E_{21}^{-1} E21−1(在 E 21 A = U E_{21} A = U E21A=U两边同乘以 E 21 − 1 E_{21}^{-1} E21