第十三节 复习一

本章是习题课,旨在通过习题来对前面内容进行回顾复习。

1. 设 u , v , w u,v,w u,v,w R 7 R^7 R7 空间内的非零向量,它们生成了一个属于 R 7 R^7 R7 的向量子空间,则此空间的维数是多少?

由 3 个向量张成的向量空间,显然维数 d i m C < = 3 dimC<=3 dimC<=3 。题中已经写明 u , v , w u,v,w u,v,w 这三个向量都是非零向量,所以 d i m C ≠ 0 dimC≠0 dimC=0 ,因此 d i m C ∈ { 1 , 2 , 3 } dimC∈\{1,2,3\} dimC{123}

2. 有一个 5 × 3 5×3 5×3 的阶梯型矩阵 U U U,秩为 3 3 3,求该矩阵的零空间。

由题可知该矩阵列满秩,所以不存在自由变量,于是矩阵的零空间将只有零向量。

3. 给定 10 × 3 10×3 10×3 的矩阵 B = [ R 2 R ] B=\begin{bmatrix}R\\2R\end{bmatrix} B=[R2R] R R R r r e f rref rref 型矩阵)。该矩阵的秩是多少,其 r r e f rref rref 型矩阵是怎样的?

这两个问题的求解都需要对 B B B 进行消元,消元可得: B = [ R 2 R ] → [ R 0 ] B=\begin{bmatrix}R\\2R\end{bmatrix}→\begin{bmatrix}R\\0\end{bmatrix} B=[R2R][R0],后者显然就是其 r r e f rref rref 型矩阵,其秩即为 R R R 的秩( r a n k ( B ) = r a n k ( R ) rank(B)=rank(R) rank(B)=rank(R))。

4. 设 C = [ R R R 0 ] C=\begin{bmatrix}R&R\\R&0\end{bmatrix} C=[RRR0] ,其 r r e f rref rref 型矩阵是怎样的?

[ R R R 0 ] → [ R R 0 − R ] → [ R R 0 R ] → [ R 0 0 R ] \begin{bmatrix}R&R\\R&0\end{bmatrix}→\begin{bmatrix}R&R\\0&-R\end{bmatrix}→\begin{bmatrix}R&R\\0&R\end{bmatrix}→\begin{bmatrix}R&0\\0&R\end{bmatrix} [RRR0][R0RR][R0RR][R00R]
化简到最后的 [ R 0 0 R ] \begin{bmatrix}R&0\\0&R\end{bmatrix} [R00R]已经非常接近 r r e f rref rref型。但注意到, R R R 中可能存在零行,所以严格意义上还应当将 [ R 0 0 R ] \begin{bmatrix}R&0\\0&R\end{bmatrix} [R00R] R R R 的下面的零行移到 [ R 0 0 R ] \begin{bmatrix}R&0\\0&R\end{bmatrix} [R00R] 整体的最下面,这样才最终得到标准的 r r e f rref rref 型矩阵。

4.1. 设 R R R 的秩为 3 3 3,那么 C C C 的左零空间的维数是多少?

本题等价于求 d i m N ( C T ) dimN(C^T) dimN(CT) C C C 是一个 10 × 6 10×6 10×6 的矩阵,由于 R R R 的秩为 3 3 3,那么 C C C 的秩就为 6 6 6,所以 d i m ( N ( C T ) ) = m − r = 10 − 6 = 4 dim(N(C^T))=m−r=10−6=4 dim(N(CT))=mr=106=4

5. 已知: A x = [ 2 4 2 ] , x = [ 2 0 0 ] + c [ 1 1 0 ] + d [ 0 0 1 ] Ax=\begin{bmatrix}2\\4\\2\end{bmatrix},x=\begin{bmatrix}2\\0\\0\end{bmatrix}+c\begin{bmatrix}1\\1\\0\end{bmatrix}+d\begin{bmatrix}0\\0\\1\end{bmatrix} Ax=242x=200+c110+d001。A 的秩是多少?

容易知道矩阵 A A A 应该是一个 3 × 3 3×3 3×3 的矩阵。 A A A 的零空间的维数是 2 2 2,这也即 n − r = 2 n−r=2 nr=2,又因为 n = 3 n=3 n=3,所以矩阵 A A A 的秩为 1。

5.1. 矩阵 A 究竟是怎样的?

这里我们得信息只有方程的解,包括特解和零空间的基,那么我们从列向量的线性组合入手,向量 [ 2 0 0 ] \begin{bmatrix}2\\0\\0\end{bmatrix} 200是方程得特解,即 A [ 2 0 0 ] A\begin{bmatrix}2\\0\\0\end{bmatrix} A200= [ 2 4 2 ] \begin{bmatrix}2\\4\\2\end{bmatrix} 242,即 A 的第一列为 [ 1 2 1 ] \begin{bmatrix}1\\2\\1\end{bmatrix} 121

然后观察零空间的两个特解,有
A [ 1 1 0 ] = [ 0 0 0 ] (第一列和第二列相加为0) A\begin{bmatrix}1\\1\\0\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix} \tag{第一列和第二列相加为0} A110=000(0)
A [ 0 0 1 ] = [ 0 0 0 ] (第三列为0) A\begin{bmatrix}0\\0\\1\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix} \tag{第三列为0} A001=000(0)

于是解得 A = [ 1 − 1 0 2 − 2 0 1 − 1 0 ] A=\begin{bmatrix}1&-1&0\\2&-2&0\\1&-1&0\end{bmatrix} A=121121000

5.2. 若 Ax=b 有解,那么 b 应该满足何种形式?

该问题等价于求解 A A A 的列空间,因为 r a n k ( A ) = 1 rank(A)=1 rank(A)=1,所以 b 应该满足以下形式: b = c [ 1 2 1 ] b=c\begin{bmatrix}1\\2\\1\end{bmatrix} b=c121

6.如果一个方阵 A 的零空间只包含零向量,那么其左零空间呢?

也只包含零向量。

7. 所有的 5 5 5 阶可逆方阵是否构成向量空间?

否。因为至少连零矩阵都不包含在内,所以肯定不是。

8. 存在除零矩阵外,平方为零的矩阵吗?

存在,如 B = [ 0 1 0 0 ] B=\begin{bmatrix}0&1\\0&0\end{bmatrix} B=[0010]

9.方阵的各列线性无关, A x = b Ax=b Ax=b 是否总是有解的?

方阵列满秩,显然总有解。

10. 已知, B = [ 1 1 0 0 1 0 1 0 1 ] [ 1 0 − 1 2 0 1 1 − 1 0 0 0 0 ] B= \begin{bmatrix}1&1&0\\0&1&0\\1&0&1\end{bmatrix}\begin{bmatrix}1&0&-1&2\\0&1&1&-1\\0&0&0&0\end{bmatrix} B=101110001100010110210,求 B B B 的零空间?

首先知道的是, B B B 是一个 3 × 4 3×4 3×4 的矩阵,所以其零空间是 R 4 R^4 R4 的子空间。

我们先不直接进行乘积求出 B B B,容易发现 C C C 是一个可逆矩阵,那么对于 B x = C D x = 0 Bx=CDx=0 Bx=CDx=0,等式乘以 C − 1 C^{−1} C1 C − 1 C D x = D x = 0 C^{−1}CDx=Dx=0 C1CDx=Dx=0。这说明 B B B 的零空间只取决于矩阵 D D D,求解 B B B 的零空间等价于求解 D D D 的零空间。

我们得到了一个结论: 假设有矩阵 C , D C,D C,D,当 C C C 可逆时,那么 N ( C D ) = N ( D ) N(CD)=N(D) N(CD)=N(D)

现求解 D D D 的零空间,容易发现可以直接使用前面介绍过的 r r e f rref rref 型的知识。

D D D 中有 I= [ 1 0 0 1 ] , F = [ − 1 2 1 − 1 ] \begin{bmatrix}1&0\\0&1\end{bmatrix},F=\begin{bmatrix}-1&2\\1&-1\end{bmatrix} [1001]F=[1121]。所以 D D D 的零空间的基为 [ 1 − 1 1 0 ] , [ − 2 − 1 0 1 ] \begin{bmatrix}1\\-1\\1\\0\end{bmatrix},\begin{bmatrix}-2\\-1\\0\\1\end{bmatrix} 11102101

10.1. 求 B x = [ 1 0 1 ] Bx=\begin{bmatrix}1\\0\\1\end{bmatrix} Bx=101的通解。

我们已经求出了 B B B 的零空间的基(也即 D D D 的零空间的基),所以现在只需要找出一个特解即可。

观察整个矩阵 C C C 和矩阵 D D D 的第一列,容易发现 C ⋅ ( c o l 1 o f D ) = [ 1 0 1 ] C⋅(col1 of D)=\begin{bmatrix}1\\0\\1\end{bmatrix} C(col1ofD)=101

这也即 B B B 的第一列恰好就是 [ 1 0 1 ] \begin{bmatrix}1\\0\\1\end{bmatrix} 101。于是我们立刻就找到了一个特解 [ 1 0 0 0 ] \begin{bmatrix}1\\0\\0\\0\end{bmatrix} 1000(取第一列即为结果)。

此题得解。

如果矩阵是方阵,是否意味着矩阵的行空间等于列空间?

错误,反例: B = [ 0 1 0 0 ] B=\begin{bmatrix}0&1\\0&0\end{bmatrix} B=[0010]

11. 如果 A 和 B 的四个子空间相同,则 A 是 B 的倍数。

错误,任意同阶的可逆矩阵其四个子空间都相同,然而却不一定成倍数。

12. 给定矩阵 A,交换其中的两行,哪些子空间没变?

行空间与零空间没变。

13. 为什么向量 [ 1 2 3 ] T \begin{bmatrix}1&2&3\end{bmatrix}^T [123]T 不能既是 A 的某一行,又在 A 的零空间中?

直接代入方程 A x = 0 Ax=0 Ax=0:
[ 1 2 3 . . . . . . . . . . . . . . . . . . ] [ 1 2 3 ] = [ 0 0 0 ] \begin{bmatrix}1&2&3\\...&...&...\\...&...&...\end{bmatrix}\begin{bmatrix}1\\2\\3\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix} 1......2......3......123=000
显然, b 11 ≠ 0 b_{11}≠0 b11=0,上式不可能成立。

实际上, 对于一个给定的矩阵,其行空间和零空间所共享的向量只有零向量,这涉及到了正交的概念,矩阵的零空间与行空间正交。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值