MMseqs注释分类

本文介绍了MMseqs2的安装方法,包括通过conda和静态编译,以及针对Linux系统的性能优化。详细讲解了GTDB_v95数据库的下载与使用,以及如何创建和分析查询数据库,特别是CMake和mmseqs工具在过程中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用方法

github链接https://github.com/soedinglab/mmseqs2

MMseqs2 User Guide链接https://mmseqs.com/latest/userguide.pdf

  1. 安装方式

    • 通过conda

      conda install -c conda-forge -c bioconda mmseqs2
      
    • 静态安装(AVX2),下载压缩包,解压,将解压后的bin所在的路径添加到环境变量即可

      wget https://mmseqs.com/latest/mmseqs-linux-avx2.tar.gz; tar xvfz mmseqs-linux-avx2.tar.gz; export PATH=$(pwd)/mmseqs/bin/:$PATH
  2. 编译(可选)

    • 编译可以通过优化特定的系统来提高性能,下面以linux系统为例

      git clone https://github.com/soedinglab/MMseqs2.git
      cd MMseqs2
      mkdir build 
      cd build
      cmake -DCMAKE_BUILD_TYPE=RELEASE -DCMAKE_INSTALL_PREFIX=. .. 
      make
      make install
      export PATH=$(pwd)/bin/:$PATH
  3. 数据库下载(GTDB_v95版本)

  4. 创建query数据库(待比对数据集,以CAMI_low数据集为例)

    mmseqs createdb /mydata/cami_low.fasta /tmp/query_db # 两个参数,一个是待比对序列,一个是比对数据库
  5. 注释分类(Taxonomy)

    mmseqs taxonomy /tmp/query_db /data_base/gtdb_db/GTDB taxonomyResult tmp # 后面两个参数是必须的,一个是分类结果路径,一个是用于比对过程中存储临时文件的路径,以上命令为默认参数,运行时磁盘空间要在500G以上
  6. 分类结果输出为.tsv格式

    mmseqs createtsv /tmp/query_db taxonomyResult taxonomyResult.tsv
  7. 分类结果如下

     

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值