机器学习概述

在这里插入图片描述

一、什么是机器学习

机器学习是一种人工智能技术,通过对数据的学习和分析,让计算机系统自动提高其性能。简而言之,机器学习是一种从数据中学习规律和模式的方法,通过数据来预测、分类或者决策

在这里插入图片描述

二、机器学习的工作原理

机器学习的工作原理主要包括以下几个步骤:

  • 数据收集:首先需要收集数据并将其转化为可以计算的形式,例如数值、文本或图像等。

  • 数据预处理:数据收集后,需要对数据进行清洗、去除异常值、缺失值处理、特征选择等预处理步骤。

  • 特征工程: 是指在机器学习中对原始数据进行转换、组合和选择等处理,以提取更有用的特征或属性,以帮助机器学习算法更好地理解和处理数据。简而言之,特征工程就是对原始数据进行预处理,以提取有用信息来辅助机器学习。

  • 模型选择:根据问题的特点和数据的特征选择适合的机器学习算法和模型。

  • 模型训练(机器学习):利用已有数据对所选的机器学习模型进行训练,从而使模型能够学习数据中的规律和模式。

  • 模型评估:训练完成后,需要对模型进行评估和调整,以检查其性能和精度,并进行优化。

  • 模型应用:经过训练和优化后,机器学习模型可以用于新数据的预测、分类、聚类等任务。

    在这里插入图片描述

三、数据简介
  • 数据简介

    在数据集中一般:

    • 一行数据我们称为一个样本
    • 一列数据我们称为一个特征
    • 有些数据有目标值(标签值),有些数据没有标签值
  • 数据类型构成

    • 数据类型一:特征值+目标值(目标值是连续的和离散的)
    • 数据类型二:只有特征值,没有目标值
  • 数据分割

    • 机器学习一般的数据集会划分为两个部分:
      • 训练数据:用于训练,构建模型
      • 测试数据:在模型检验时使用,用于评估模型是否有效
    • 划分比例:
      • 训练集:70% 80% 75%
      • 测试集:30% 20% 25%
四、特征工程
  • 什么是特征工程

    是指在机器学习中对原始数据进行转换、组合和选择等处理,以提取更有用的特征或属性,以帮助机器学习算法更好地理解和处理数据。简而言之,特征工程就是对原始数据进行预处理,以提取有用信息来辅助机器学习。

  • 为什么要用到特征工程

    特征工程是机器学习中非常重要的一环,因为好的特征能够提高算法的精度和效率,甚至决定了机器学习模型的上限。因此,进行特征工程需要根据具体问题和数据特点进行灵活选择和处理,以达到最佳效果。

  • 特征工程包含的内容

    • 特征提取:从原始数据中提取特征,通常是利用数学和统计方法对数据进行转换和降维,例如主成分分析(PCA)、奇异值分解(SVD)等。
    • 特征转换(特征预处理):将提取的特征进行转换,以符合算法的需求,例如将类别特征转换为数值特征,或者对数值特征进行标准化。
    • 特征降维:指在某些限定条件下,降低随机变量(特征)个数,得到一组“不相关”主变量的过程
    • 特征选择:根据特征的重要性和相关性等指标,选择最具有代表性的特征,以减少计算复杂度和提高算法性能。
五、机器学习算法分类
  • 监督学习

    输入数据是由输入特征值和目标值所组成。函数的输出可以是一个连续的值(称为回归),或是输出有限个离散值(称为分类)

    • 回归问题

      例如:预测房价,根据集拟合出一条连续曲线

    • 分类问题

      例如:根据肿瘤特征判断良性还是恶性,得到的是结果是“良性”或者“恶性”,是离散

  • 无监督学习

    输入数据是由输入特征值组成,没有目标值。输入数据没有被标记,也没有确定的结果,样本数据类别未知;需要根据样本间的相似性对样本集进行类别划分。

    • 有监督,无监督算法对比

    在这里插入图片描述

  • 半监督学习

    训练集同时包含有标记样本数据和未标记样本数据

    • 监督学习训练方式和半监督学习训练方式的区别:
      1. 数据量不同:监督学习需要大量有标签的数据来进行训练,而半监督学习则可以利用部分有标签数据和大量无标签数据进行训练。
      2. 模型的预测能力:监督学习的模型在处理未知数据时需要有标签的数据作为参考,而半监督学习的模型可以更好地利用未标记数据来提高预测能力。
      3. 训练时间:由于半监督学习使用了更多的数据进行训练,因此需要更长的时间来完成模型的训练。
      4. 精度:半监督学习的模型在某些情况下可以比监督学习的模型具有更好的精度,尤其是当标记数据很少的时候。
      5. 应用场景:监督学习适用于已经有标签数据的问题,例如分类和回归等问题,而半监督学习适用于数据集标签数量较少或标签数据难以获得的问题。
  • 强化学习

    实质就是make decisions问题,即自动进行决策,并且可以做连续决策。强化学习的的目标就是获得最多的累计奖励

    • 强化学习的五个元素:

      agent、action、reward、environment、observation

    • 监督学习的强化学习的对比:

      在这里插入图片描述

  • 四种学习算法的小结

    在这里插入图片描述

六、模型评估

模型评估是模型开发过程不可或缺的一部分。它有助于发现表达数据的最佳模型和所选模型将来工作的性能如何。

按照数据集的目标值不同,可以把模型评估分为分类模型评估和回归模型评估

  • 分类模型评估

    例如:肿瘤良性、恶性预测模型

    • 准确率:

      预测正确的数占样本总数的比例。

    • 其他评价指标:

      精确率、召回率、F1-score、AUC指标等。

  • 回归模型评估

    例如:房价预测模型

    • 均方根误差(Root Mean Squared Error,RMSE)

      RMSE是一个衡量回归模型误差率的常用公式。不过,它仅能比较误差是相同单位的模型。

    • 均方根误差公式

      在这里插入图片描述

    • 举例:

      假设有一个房价预测模型,只有五个样本,对应的

      真实值为:100,120,125,230,400

      预测值为:105,119,120,230,410

      则均方根误差求解得:
      R M S E = [ ( 105 − 100 ) 2 + ( 119 − 120 ) 2 + ( 120 − 125 ) 2 + ( 230 − 230 ) 2 + ( 410 − 400 ) 2 ] 5 2 = 5.495 RMSE=\sqrt[2]{\frac{[(105-100)^2+(119-120)^2+(120-125)^2+(230-230)^2+(410-400)^2]}{5}}=5.495 RMSE=25[(105100)2+(119120)2+(120125)2+(230230)2+(410400)2] =5.495

  • 拟合

    模型评估用于评价训练好的模型的表现效果,其表现效果大致可以分为两类:过拟合、欠拟合。

    • 欠拟合(under-fitting):模型学习的太过粗糙,在训练集中的样本数据特征关系都没有学出来。
    • 过拟合(over-fitting):所建的机器学习模型或者是深度学习模型在训练样本中表现得过于优越,导致在测试数据集中表现不佳。
  • 6
    点赞
  • 80
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 基于机器学习的路面病害检测是利用计算机视觉和机器学习技术对道路表面上的病害进行自动检测和识别的过程。其主要流程包括图像采集、图像预处理、特征提取、分类器训练和病害检测等几个步骤。 在图像采集阶段,利用摄像机或者其他设备对道路表面进行拍摄,获取病害图像。在预处理阶段,对图像进行去噪、图像增强等处理,以提高识别精度。在特征提取阶段,利用计算机视觉技术对图像进行分析,提取出病害的特征,例如形状、纹理、颜色等。在分类器训练阶段,利用机器学习算法对提取的特征进行训练,建立病害分类模型。最后,在病害检测阶段,利用训练好的分类器对新的道路病害图像进行检测和识别。 基于机器学习的路面病害检测具有自动化、高效性和准确性等优点,可以有效提高道路病害的检测速度和精度,为道路维护和管理提供了有力的支持。 ### 回答2: 基于机器学习的路面病害检测是一种利用机器学习算法和技术来自动识别和检测路面病害的方法。路面病害包括裂缝、坑洞、龟裂等,它们对道路的安全性和可行性都有重要影响。 这种方法通常包括以下步骤:首先,需要采集路面图像或视频数据,可以使用传感器、摄像机等设备进行采集。接下来,要对这些数据进行预处理,包括去除噪声和图像增强等操作,以提高检测的准确性和性能。 然后,需要使用机器学习算法对预处理后的数据进行训练,这一步骤称为模型训练。训练数据可以包括已标记的正常路面和含有病害的路面图像,让机器学习算法能够学习到不同病害类型的特征和模式。常用的机器学习算法包括支持向量机、决策树、神经网络等。 一旦模型训练完成,就可以使用该模型来进行路面病害检测了。将新的路面图像输入到模型中,模型将根据之前学到的特征和模式进行预测和分类,判断该图像是否存在路面病害。预测结果可以使用不同的方式进行呈现,比如可以可视化成图像或标记出病害位置。 基于机器学习的路面病害检测具有高效性和准确性的优势。相比传统人工检测方式,这种方法能够实现自动化和快速检测,节省人力资源和时间成本。而且,由于机器学习可以不断学习和优化,所以检测效果也会随着时间的推移而得到改善。因此,基于机器学习的路面病害检测在道路维护和交通安全方面有着广阔的应用前景。 ### 回答3: 基于机器学习的路面病害检测是将机器学习算法应用于路面病害检测的一种方法。路面病害是指路面上的裂缝、坑洼、龟裂等损坏,这些病害如果得不到及时发现和修补,会对交通安全和行车舒适度产生很大的影响。 基于机器学习的路面病害检测主要包括以下几个步骤。首先,需要收集大量的路面病害样本数据,包括病害图像、病害位置和病害严重程度等信息。然后,利用这些样本数据进行数据预处理,如图像去噪、裁剪和尺度归一化等操作,以提高后续的模型训练效果。 接下来,选择适合的机器学习算法进行模型训练。常用的算法包括支持向量机(SVM)、卷积神经网络(CNN)和深度学习等。在模型训练过程中,需要将样本数据划分为训练集和测试集,通过迭代优化算法参数,使得模型能够准确地判断路面病害的存在与严重程度。 最后,将训练好的模型应用于实际路面病害检测中。利用摄像头等设备获取实时的路面图像,经过图像处理和特征提取,然后输入已训练好的模型进行预测。模型会根据图像的特征进行病害识别和分类,并判断病害的严重程度,进一步提供相应的维修建议。 基于机器学习的路面病害检测具有高效、准确、自动化等特点。它能够大大提高路面病害检测的效率,减少人工巡检的工作量,降低维修成本,同时能够实现对路面病害的及时监测和预警,有助于改善道路交通的安全性和舒适性。这种技术的发展前景较好,将在未来的交通领域得到广泛应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值