R语言中正态性检验的方法

33 篇文章 ¥59.90 ¥99.00
本文介绍了R语言中进行正态性检验的几种常见方法,包括Shapiro-Wilk检验、Anderson-Darling检验、Kolmogorov-Smirnov检验以及QQ图检验,并提供了相应的R语言函数:shapiro.test(), ad.test(), ks.test()以及qqnorm()和qqline()。正确选择和应用这些方法有助于提高数据分析的准确性和可靠性。" 120743106,9265051,游戏盾:防御DDoS与CC攻击的原理与应用,"['云安全', '服务器安全', '系统安全', 'DDoS防御', '游戏行业']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言中正态性检验的方法

正态性检验是统计学中常用的方法之一,用于检验数据是否符合正态分布。在R语言中,有多种方法可以进行正态性检验。本文将介绍几种常见的正态性检验方法,并提供相应的源代码。

  1. Shapiro-Wilk检验
    Shapiro-Wilk检验是一种常用的正态性检验方法,适用于样本较小(通常小于5000)的情况。在R语言中,可以使用shapiro.test()函数进行Shapiro-Wilk检验。
# 生成一个符合正态分布的随机样本
set.seed(1)
x <- rnorm(100)

# 进行Shapiro-Wilk检验
result <- shapiro.test(x)

# 打印检验结果
print(result)
  1. Anderson-Darling检验
    Anderson-Darling检验也是一种常见的正态性检验方法,适用于样本较大的情况。在R语言中,可以使用ad.test()函数进行Anderson-Darling检验。
# 生成一个符合正态分布的随机样本
set.seed(1)
x <- rnorm(100)

# 进行Anderson-Darling检验
result <- ad.test(x)

# 打印检验结果
print(result)
### 使用R语言进行正态性检验 在R语言中,`shapiro.test()` 是一种常用的正态性检验方法。该函数基于Shapiro-Wilk测试,用于检测样本是否来自正分布的数据集[^1]。 #### 方法一:使用 `shapiro.test()` 以下是通过 `shapiro.test()` 函数执行正态性检验的一个简单示例: ```r # 设置随机种子以便结果可重复 set.seed(42) # 创建一个模拟数据向量 (假定为正分布) x <- rnorm(100, mean = 5, sd = 2) # 执行 Shapiro-Wilk 正态性检验 result_x <- shapiro.test(x) # 输出检验结果 print(result_x) ``` 运行以上代码后会返回如下形式的结果: ``` Shapiro-Wilk normality test data: x W = 0.98862, p-value = 0.5548 ``` 在此处,由于p值为0.5548(>0.05),因此可以接受原假设,即认为数据来源于正分布[^3]。 对于另一个非正分布的例子,我们可以创建偏斜的数据并再次应用此测试: ```r y <- runif(100, min=0, max=1) # 非正分布的均匀分布数据 result_y <- shapiro.test(y) print(result_y) ``` 可能获得这样的输出: ``` Shapiro-Wilk normality test data: y W = 0.7, p-value = 7e-13 ``` 这里因为p值非常小 (<0.05),所以拒绝原假设,说明这些数据不遵循正分布[^2]。 #### 方法二:针对DataFrame中的分组数据使用`tapply()` 当我们希望对数据框内的不同类别分别正态性检验时,可以利用`tapply()`配合`shapiro.test()`完成操作。例如,在`birthwt` 数据集中按种族分类检查婴儿体重(`bwt`) 是否满足正分布条件: ```r library(MASS) # 加载MASS包以访问birthwt数据集 tapply(birthwt$bwt, birthwt$race, shapiro.test) ``` 这将分别为每种种族下的婴儿出生重量提供独立的Shapiro-Wilk 测试报告[^4]。 除了上述提到的方式外,还有其他几种可用于评估数据正常的技术,比如绘制QQ图或者采用Kolmogorov-Smirnov Test (`ks.test()`) 来比较经验累积分布函数(ECDFs) 和理论标准正CDF之间的差异程度等替代方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值