RF-LIO:一种专为高动态场景设计的LiDAR惯导融合里程计
摘要:本文介绍了一种名为RF-LIO的紧耦合LiDAR惯导融合里程计,该算法能够在高动态场景中实现准确的定位和建图。通过结合LiDAR感知和惯性测量单元(IMU)的数据,RF-LIO能够克服LiDAR在高动态环境下的困难,提供稳健的位置估计,并生成高质量的地图。文章还提供了相应的源代码,供读者参考。
-
引言
随着自动驾驶和机器人技术的发展,准确的定位和建图在高动态场景中变得尤为重要。而传统的基于视觉的方法在高速运动、快速转弯等情况下往往表现不佳。为此,我们提出了一种紧耦合LiDAR惯导融合里程计(RF-LIO),能够有效解决这些问题。 -
算法原理
RF-LIO算法使用两个传感器:LiDAR和IMU。LiDAR负责提供高精度的三维点云数据,而IMU则提供相对于初始位置的加速度和角速度信息。由于LiDAR在高动态场景下难以获得准确的测量,需要使用惯导数据进行补偿。RF-LIO利用扩展卡尔曼滤波器(EKF)来估计系统状态,并利用IMU的数据进行状态更新。 -
算法流程
(1)数据预处理:将LiDAR点云进行特征提取,滤除离群点,并将其转换为地图坐标系。
(2)运动估计:利