C.
题意为:给定n,k , (n<=k<2n)
求构造出来一个长度为k的p序列,使得:
b序列 =
p
1
,
p
2
,
p
3
,
p
4
.
.
.
.
.
.
p
k
,
p
k
−
1
.
.
.
.
.
.
p
k
−
(
n
−
k
)
p_1,p_2,p_3,p_4......p_k,p_{k-1}......p_{k-(n-k)}
p1,p2,p3,p4......pk,pk−1......pk−(n−k)的逆序数小于等于a =
1
,
2
,
3
,
4.....
k
,
k
−
1......
k
−
(
n
−
k
)
1,2,3,4.....k,k-1......k-(n-k)
1,2,3,4.....k,k−1......k−(n−k)的逆序数。求b取最大字典序时b的序列。
打表:
n,k = 4 3发现答案序列为132
n,k = 5 3发现答案序列为3 2 1
nk = 44 答案:1 2 3 4
nk = 54 答案:1 2 4 3
nk = 64 答案:1 4 3 2
nk = 74 答案:4 3 2 1
发现b的逆序数总是和a的逆序数是一样的,根据打表信息和猜的结论耦合一下发现只需要把后面n-k+1倒序输出就好了;
答案代码:
int n,k;read(n);read(k);
for(int i=1;i<=2*k-n-1;i++)printf("%d ",i);
for(int i=k;i>=2*k-n;i--)printf("%d ",i);
粗略证明一下:b的字典序和逆序数是顺序增长的,即逆序数大,字典序一定偏大。
D
题意为给定长度为n的+,-符号序列,定义初始值为0,求执行完n个+或者-操作后中间出现了多少个不同的数字。
样例8 4 -±-±-+
表示 0 -1 0 -1 -2 -1 -2 -3 -2 (注意第一个数0也要算上)
然后给m次询问,每次询问给定两个数l,r求忽略l到r的指令的答案(出现的不同数)。
于是很简单的思路:把[1,(l-1)]和[r+1,n]合起来就是答案了。记录一下
a
l
−
1
a_{l-1}
al−1还有从1跑到l-1的top和low 、 r+1跑到n的top和low就可以了。
//pre[i]就是从1跑到i的top和low
//suf[i]就是从i跑到n的top和low
int n,m;read(n);read(m);
for(int i =1;i<=n;++i)scanf(" %c",&s[i]);
for(int i =1;i<=n;++i)
{
if(s[i]=='+')a[i] = a[i-1]+1;
else a[i] = a[i-1]-1;
pre[i].X = max(pre[i-1].X,a[i]);
pre[i].Y = min(pre[i-1].Y,a[i]);
//求pre就摁求,同时求出a数组表示从1执行到i的当前数。
}
suf[n+1]=(pii){0,0};
for(int i =n;i>=1;--i)
{
if(s[i]=='+')suf[i] = (pii){max(suf[i+1].X+1,0),min(suf[i+1].Y+1,0)};
else suf[i] = (pii){max(suf[i+1].X-1,0),min(suf[i+1].Y-1,0)};
//suf数组求法就是倒着求,然后对上下界进行抬高或者下降,取0分界。
}
while(m--)
{
int l,r;read(l);read(r);
int top = pre[l-1].X , low = pre[l-1].Y;
int dtop = suf[r+1].X , dlow = suf[r+1].Y;
// printf("%d %d %d %d\n",top,low,dtop,dlow);
pii ans = (pii){max(top,dtop+a[l-1]) , min(low,dlow+a[l-1])};
//最后答案就是两个答案拼接然后各取最值。
printf("%d\n",ans.X-ans.Y+1);
}
复健第一晚上的cf脑溢血了,c题想了好久,11分过b,1:00才过c,可以说人已经退化了。接着30分钟才过d。d想的很快,看完题就知道是这个做法但是调了很久代码,就是维护出来suf卡了一下,求ans也卡了一下。只能说这么久没碰题目手很生疏。